

nagra

ARBEITSBERICHT NAB 23-01 BAND 8

Bautechnisches Dossier Standortvergleich Band 8: Tunnelstatik

Oktober 2023

Nagra | Nationale Genossenschaft für die Lagerung radioaktiver Abfälle Hardstrasse 73 | 5430 Wettingen | Schweiz +41 56 437 11 11 | info@nagra.ch | nagra.ch

nagra

ARBEITSBERICHT NAB 23-01 BAND 8

Bautechnisches Dossier Standortvergleich Band 8: Tunnelstatik

Oktober 2023

STICHWÖRTER

Bautechnisches Dossier, Tunnelstatik, Standortvergleich, Lagerprojekt, Tragwerksmodelle, Berechnungsmodelle, Bemessung, Tragsicherheit, Gebrauchstauglichkeit, Referenzbericht Rahmenbewilligungsgesuch, RBG

Nagra | Nationale Genossenschaft für die Lagerung radioaktiver Abfälle Hardstrasse 73 | 5430 Wettingen | Schweiz +41 56 437 11 11 | info@nagra.ch | nagra.ch Nagra Arbeitsberichte stellen Ergebnisse aus laufenden Aktivitäten dar, welche nicht zwingend einem vollumfänglichen Review unterzogen wurden. Diese Berichtsreihe dient dem Zweck der zügigen Verteilung aktueller Fachinformationen.

Copyright © 2023 by Nagra, Wettingen (Schweiz) / Alle Rechte vorbehalten. Das Werk einschliesslich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung ausserhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der Nagra unzulässig und strafbar. Das gilt insbesondere für Übersetzungen, Einspeicherung und Verarbeitung in elektronischen Systemen und Programmen, für Mikroverfilmungen, Vervielfältigungen usw.

Zusammenfassung

Mit dem Rahmenbewilligungsgesuch für das geologische Tiefenlager reicht die Nagra einen Bericht zur Begründung der Standortwahl ein. Die Nagra dokumentiert die Lagerprojekte für den dafür durchzuführenden Standortvergleich im «Bautechnischen Dossier Standortvergleich», welches neun Bände umfasst.

Die Tunnelstatik als Band 8 des Bautechnischen Dossiers dokumentiert die tunnelstatischen Berechnungen für die Beurteilung der Machbarkeit der Bauverfahren und für die Bemessung der untertägigen Bauwerke der sechs Lagerprojekte für den Vergleich der drei Standorte. Der vorliegende Bericht enthält die Beschreibung der verwendeten Berechnungsmodelle und die Dokumentation der geführten Nachweise.

Die Beschreibung der Berechnungsmodelle umfasst die Dokumentation des zu Grunde liegenden statischen Systems, die Modellgeometrie, die Anfangs- und Randbedingungen und die abgebildeten Berechnungsschritte.

Die Nachweise wurden für alle Bauwerke im Opalinuston geführt. Die Berechnungen wurden jedoch wegen der ähnlichen Geometrie, Tiefenlage und Bauverfahren einzelner Bauwerke nur für repräsentative Bauwerke durchgeführt und auf die ähnlichen Bauwerke übertragen. Die Nachweise basieren auf den Anforderungen der geltenden Normen.

Mit den statischen Berechnungen wird nachgewiesen, dass die Tragfähigkeit und die Gebrauchstauglichkeit der Tragwerke für den betrachteten Nutzungszeitraum gewährleistet sind. Die Machbarkeit der eingesetzten Bauverfahren wird nachgewiesen.

Inhaltsverzeichnis

Zusammenf	assung	I
Inhaltsverze	ichnis	III
Tabellenver	zeichnis	V
Figurenverz	eichnis	VII
Abkürzungs	verzeichnis	VII
1	Einleitung	1
1.1	Zweck des vorliegenden Berichts	1
1.2	Geltungsbereich und Abgrenzung	1
1.3	Inhalt und Aufbau	3
2	3D-Berechnungsmodelle	4
2.1	Generelle Annahmen	4
2.1.1	Modellgeometrie	4
2.1.2	Anfangs- und Randbedingungen	4
2.1.3	Kontaktbedingung Verkleidung/Ausbruchsicherung – Baugrund	5
2.1.4	Berücksichtigung Porenwasser	6
2.2	Berechnungsmodell HAA	6
2.2.1	Normalprofile	7
2.2.2	Kontaktbedingung zwischen Tübbing und Baugrund	8
2.2.3	Räumliche Diskretisierung HAA	9
2.2.4	Berechnungsschritte	10
2.3	Berechnungsmodell SMA	12
2.3.1	Normalprofile	13
2.3.2	Modellierungsannahmen: nachgiebiger Ausbau Hauptlager SMA	14
2.3.3	Räumliche Diskretisierung SMA	15
2.3.4	Berechnungsschritte	16
3	2D-Berechnungsmodell	19
3.1	Generelle Annahmen für die numerische Modellierung	19
3.1.1	Modellgeometrie	19
3.1.2	Anfangs- und Randbedingungen	19
3.1.3	Kontaktbedingungen Verkleidung/Ausbruchsicherung – Baugrund	20
3.1.4	Berücksichtigung Porenwasser	20
3.1.5	Modellierungsannahme nachgiebiger Ausbau	20
3.2	Normalprofil	20
3.3	Räumliche Diskretisierung	21
3.4	Berechnungsschritte	22
4	Bemessung der Machbarkeit und Tragsicherheit	25
4.1	Bemessungssituationen/Grenzzustände der Tragsicherheit	25
4.2	Bemessung Hauptlager HAA (Lagerstollen)	25

4.2.1	Bestimmung des erforderlichen Überschnitts	25
4.2.2	Nachweis der Tragsicherheit	26
4.3	Bemessung der Bauwerke mit einer nachgiebigen Ausbruchsicherung und einer steifen Innenschale	28
4.3.1	Bestimmung des Mehrausbruchs der nachgiebigen Ausbruchsicherung aus den 3D-Berechnungsmodellen	28
4.3.2	Bestimmung des Mehrausbruchs der nachgiebigen Ausbruchsicherung aus dem 2D-Berechnungsmodell	30
4.3.3	Nachweis der Tragsicherheit	31
5	Bemessung der Gebrauchstauglichkeit	35
6	Bemessung der weiteren Bauwerke mittels Analogieschlüssen	37
7	Nachweis HAA-Lagerstollen für Rückholung	39
8	Zusammenfassung	43
9	Literaturverzeichnis	45
Anhang A	Längsfugennachweis für den HAA-Lagerstollen	A-1
Anhang B	Dokumentation des Vorgehens und der Ergebnisse der Analogieüberlegungen	B-1
Anhang C	Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort JO	C-1
Anhang D	Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort JO	D-1
Anhang E	Dokumentation der numerischen Ergebnisse der «erweiterten Analogie» für den Standort JO	E-1
Anhang F	Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort NL	F-1
Anhang G	Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort NL	G-1
Anhang H	Dokumentation der numerischen Ergebnisse der «erweiterten Analogie» für den Standort NL	H-1
Anhang I	Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort ZNO	I-1
Anhang J	Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort ZNO	J-1
Anhang K	Dokumentation der numerischen Ergebnisse der «erweiterten Analogie» für den Standort ZNO	K-1
Anhang L	Dokumentation der numerischen Ergebnisse des Lüftungsschachtes für den Standort JO	L-1

Anhang M	Dokumentation der numerischen Ergebnisse des Betriebs- und	
	Lüftungsschachtes für den Standort NL	M-1
Anhang N	Dokumentation der numerischen Ergebnisse des Betriebs- und Lüftungsschachtes für den Standort ZNO	N-1

Tabellenverzeichnis

Tab. 2-1:	Definition Kontaktbedingung zwischen Ausbruchsicherung und Baugrund	5
Tab. 2-2:	Geometrische Angaben für das Normalprofil des Hauptlagers HAA, die für alle Standorte gelten	7
Tab. 2-3:	Geometrische Angaben für das Normalprofil des Umladebereichs HAA, die für alle Standorte gelten	8
Tab. 2-4:	Geometrische Angaben für das Normalprofil des Betriebstunnels HAA, die für alle Standorte gelten	8
Tab. 2-5:	Definition Kontaktbedingung zwischen Ringspaltmörtel und Baugrund	9
Tab. 2-6:	Diskretisierungsparameter für das Berechnungsmodell HAA	10
Tab. 2-7:	Berechnungsschritte Berechnungsmodell HAA	11
Tab. 2-8:	Geometrische Angaben für das Normalprofil des Hauptlagers SMA, die für alle Standorte gelten	14
Tab. 2-9:	Geometrische Angaben für das Normalprofil des Übernahmebereichs SMA, die für alle Standorte gelten	14
Tab. 2-10:	Geometrische Angaben für das Normalprofil des Betriebstunnels SMA, die für alle Standorte gelten	14
Tab. 2-11:	Materialparameter der «pile elements» für das Hauptlager SMA	15
Tab. 2-12:	Diskretisierungsparameter für das Berechnungsmodell SMA	16
Tab. 2-13:	Berechnungsschritte Berechnungsmodell SMA	17
Tab. 3-1:	Definition Kontaktbedingung zwischen Ausbruchsicherung und Baugrund	20
Tab. 3-2:	Geometrische Angaben für das Normalprofil der Schächte	21
Tab. 3-3:	Berechnungsschritte Berechnungsmodell Schacht	23
Tab. 4-1:	Zusammenfassung der Ergebnisse der am Ausbruchsrand ermittelten Verschiebungen	26
Tab. 4-2:	Ergebnisse Nachweis für Biegung und Normalkraft (Tübbingausbau, C60/75)	27
Tab. 4-3:	Ergebnisse Fugennachweis für Biegung und Normalkraft (Tübbingausbau, C60/75) nach 4 Jahren	27
Tab. 4-4:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für den Umladebereich HAA	28
Tab. 4-5:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für den Betriebstunnel HAA	28

Tab. 4-6:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für die Lagerkaverne des Hauptlagers SMA
Tab. 4-7:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für den Übernahmebereich
Tab. 4-8:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für den Betriebstunnel SMA
Tab. 4-9:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für den Lüftungsschacht unter Verwendung der Ergebnisse des Betriebstunnels SMA
Tab. 4-10:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für den Betriebsschacht unter Verwendung der Ergebnisse des Übernahmebereichs SMA
Tab. 4-11:	Ergebnisse des Nachweises für Biegung und Normalkraft für den Umladebereich HAA (Spritzbeton C30/37) in Schnitt 1 nach 40 Jahren
Tab. 4-12:	Ergebnisse des Nachweises für Biegung und Normalkraft für den Betriebstunnel HAA (Spritzbeton C30/37) in Schnitt A nach 40 Jahren
Tab. 4-13:	Ergebnisse des Nachweises für Biegung und Normalkraft für die SMA- Lagerkaverne (Ortbeton C30/37) in Schnitt D nach 25 Jahren
Tab. 4-14:	Ergebnisse des Nachweises für Biegung und Normalkraft für den Übernahmebereich SMA (Spritzbeton C30/37) in Schnitt C nach 25 Jahren 32
Tab. 4-15:	Ergebnisse des Nachweises für Biegung und Normalkraft für den Betriebstunnel SMA (Spritzbeton C30/37) in Schnitt A nach 50 Jahren
Tab. 4-16:	Ergebnisse des Nachweises für Biegung und Normalkraft für die Betriebsschächte (Spritzbeton C30/37) nach 100 Jahren (am Standort JO ist kein Betriebsschacht geplant)
Tab. 4-17:	Ergebnisse des Nachweises für Biegung und Normalkraft für die Lüftungsschächte (Spritzbeton C30/37) nach 100 Jahren
Tab. 7-1:	Parameter und standortspezifische Werte für die Berechnung der aus der Temperaturbelastung resultierenden Spannung im Beton
Tab. 7-2:	Standortspezifische Werte für die aus der Temperaturbelastung resultierende zusätzliche Beanspruchung des Tübbings
Tab. 7-3:	Nachweis für Biegung und Normalkraft (Tübbingausbau, C60/75) 41
Tab. 7-4:	Ergebnisse Fugennachweis für Biegung und Normalkraft (Tübbingausbau, C60/75)
Tab. 8-1:	Übersicht der standortspezifischen Bauteilstärke und Betonqualität 43
Tab. 8-2:	Übersicht des standortspezifischen Überschnitts und Mehrausbruchs

Fig. 1-1:	Darstellung der Bemessungsart und der räumlichen Abgrenzung der Tunnelstatik des geologischen Tiefenlagers anhand der Systemskizze eines Kombilagers	2
Fig. 2-1:	Randbedingungen und Geometrie der Berechnungsmodelle: SMA (links) und HAA (rechts)	5
Fig. 2-2:	Abgrenzung des Berechnungsmodells HAA	6
Fig. 2-3:	Normalprofile Hauptlager HAA (links), Umladebereich HAA (Mitte) und Betriebstunnel HAA (rechts)	7
Fig. 2-4:	Räumliche Diskretisierung (Berechnungsmodell HAA)	10
Fig. 2-5:	Abgrenzung des Berechnungsmodells SMA	13
Fig. 2-6:	Normalprofil Hauptlager SMA (links), Übernahmebereich SMA (Mitte) und Betriebstunnel SMA (rechts)	13
Fig. 2-7:	Räumliche Diskretisierung (Berechnungsmodell SMA)	16
Fig. 3-1:	Abgrenzung des Berechnungsmodells, hier am Beispiel des Betriebsschachts	19
Fig. 3-2:	Normalprofil Schächte	21
Fig. 3-3:	Diskretisierung (Berechnungsmodell Schacht)	22
Fig. 4-1:	Graphische Darstellung der gewählten Schnitte für das Auslesen der Schnittkräfte im Berechnungsmodell HAA (links) und SMA (rechts)	25

Abkürzungsverzeichnis

BFE	Bundesamt für Energie
ENSI	Eidgenössisches Nuklearsicherheitsinspektorat
gTL	Geologische(s) Tiefenlager
HAA	Hochaktive Abfälle (abgebrannte Brennelemente und hochaktive Abfälle aus der Wiederaufarbeitung)
NAB	Nagra Arbeitsbericht
NTB	Nagra Technischer Bericht
SGT	Sachplan geologische Tiefenlager
SMA	Schwach- und mittelaktive Abfälle
OPA	Opalinuston

1 Einleitung

1.1 Zweck des vorliegenden Berichts

Die Tunnelstatik ist ein Band des Bautechnischen Dossiers für den Standortvergleich. Der Zweck des Bautechnischen Dossiers ist im Band 1 «Projektdefinition und Einführung» detailliert beschrieben.

Die Tunnelstatik dokumentiert, basierend auf der Projektbasis Nagra (2023f), die tunnelstatischen Berechnungen für die Beurteilung der Machbarkeit der Bauverfahren und für die Bemessung der untertägigen Bauwerke.

1.2 Geltungsbereich und Abgrenzung

Die Tunnelstatik beschränkt sich für den Zweck des Standortvergleichs auf die Untertaganlagen im Opalinuston. Der Schwerpunkt der Tunnelstatik liegt, wie in der Projektbasis Nagra (2023f) beschrieben, auf den folgenden repräsentativen Bauwerken, die in Fig. 1-1 zu finden sind:

- Lagerstollen des Hauptlagers HAA (Nr. 20 in Fig. 1-1)
- Lagerstollenabzweiger und Umladebereiche HAA (Nr. 23)
- Lagerkavernen des Hauptlagers SMA (Nr. 13)
- Lagerkavernenabzweiger, Abladebereiche SMA und Übernahmebereiche SMA (Nr. 22)
- Betriebstunnel HAA (Nr. 15) und SMA (Nr. 9)
- Betriebsschacht (Nr. 1)
- Lüftungsschacht (Nr. 2)

Für diese Bauwerke werden ausführliche numerische Berechnungen durchgeführt. Da die Geometrie, das Bauverfahren und die Nutzungsdauer der in der Tragwerksplanung detailliert betrachteten Bauwerke ähnlich zu den weiteren Bauwerken im Opalinuston sind, können die Resultate der numerischen Berechnungen mit Analogieschlüssen für die stufengerechte Auslegung der weiteren Bauwerke im Opalinuston verwendet werden. In der Systemskizze in Fig. 1-1 wird gezeigt, in welchen Bereichen die Bemessung des Tiefenlagers auf der Basis von numerischen Berechnungen oder mittels Analogieschlüssen durchgeführt wird. In Tab. B-1 ist die Zuordnung zu den repräsentativen Bauwerken detailliert aufgelistet, um die Ausgewogenheit der Wahl der Bauwerke hinsichtlich der Geometrie zu verdeutlichen. Für die numerischen Berechnungen wurden zwei 3D-Berechnungsmodelle und ein 2D-Berechnungsmodell erstellt.

Die Tunnelstatik beschränkt sich in der gegenwärtigen Projektphase auf das Gefährdungsbild des echten Gebirgsdrucks, welcher gemäss der Gefährdungsbildanalyse im technischen Beschrieb Nagra (2023e) die Ursache für die Hauptgefährdungen im Opalinuston ist.

Fig. 1-1: Darstellung der Bemessungsart und der räumlichen Abgrenzung der Tunnelstatik des geologischen Tiefenlagers anhand der Systemskizze eines Kombilagers

1.3 Inhalt und Aufbau

Nach der Einleitung in Kapitel 1 werden in Kapitel 2 die 3D-Berechnungsmodelle beschrieben. Dabei werden grundlegende Annahmen, wie Modellgeometrie, Anfangs- und Randbedingungen sowie die Kontaktbedingungen zwischen Verkleidung/Ausbruchsicherung und Baugrund, vorgestellt. Zusätzlich wird kurz auf den Umgang mit dem Porenwasser in den Berechnungsmodellen eingegangen.

Im folgenden Kapitel 3 liegt der Fokus auf dem 2D-Berechnungsmodell für die Schachtbauwerke. Es werden allgemeine Annahmen für die numerische Modellierung beschrieben, einschliesslich der Modellgeometrie, Anfangs- und Randbedingungen sowie Kontaktbedingungen zwischen Verkleidung/Ausbruchsicherung und Baugrund.

Kapitel 4 befasst sich mit der Bemessung der Machbarkeit und Tragsicherheit der einzelnen Bauwerke. Hier dienen die in den Berechnungsmodellen ermittelten Werte für die Schnittkräfte und Verschiebungen am Ausbruchsrand als Grundlage für die Nachweise. Bei der Machbarkeit wird der notwendige Überschnitt angegeben, um ein Verklemmen der Tunnelbohrmaschine (TBM) im Hauptlager HAA zu verhindern. Zusätzlich wird der erforderliche Mehrausbruch in den anderen konventionell vorgetriebenen Bauwerken bestimmt, der sich aus den Verformungen der nachgiebigen Ausbruchsicherung vor dem Einbau der starren Verkleidung ergibt.

Die Bemessung der Gebrauchstauglichkeit wird in Kapitel 5 behandelt, während Kapitel 6 das Vorgehen bei der Bemessung der weiteren Bauwerke mittels Analogieschlüssen erläutert.

Kapitel 7 widmet sich dem vereinfachten Tragfähigkeitsnachweis des Hauptlagers HAA für die Rückholung. Dabei wird sichergestellt, dass das Bauwerk die Anforderungen aus der Nutzungsvereinbarung erfüllt.

Abschliessend präsentiert Kapitel 8 eine Zusammenfassung der Ergebnisse der Tragwerksplanung.

2 **3D-Berechnungsmodelle**

Für die Beurteilung der Machbarkeit der Bauverfahren und die Bemessung der im Kap. 1.1 genannten Tunnelbauwerke auf den echten Gebirgsdruck werden zwei 3D-Berechnungsmodelle in der FDM-Software Flac3D (Itasca Consultants) erstellt. Die Modelle berücksichtigen zum einen die Interaktion zwischen den Bauwerken und dem Baugrund und zum anderen den schrittweisen Ausbruch und sukzessiven Einbau des Ausbaus. Die Modelle gelten für alle Standorte, wobei die standortspezifische Tiefenlage in den geomechanischen Parametern und in dem Primärspannungszustand berücksichtigt wird.

Im Folgenden werden zunächst generelle Annahmen, die für die numerischen Berechnungsmodelle gelten, und anschliessend die zwei Berechnungsmodelle HAA und SMA einzeln vorgestellt.

2.1 Generelle Annahmen

2.1.1 Modellgeometrie

In beiden Berechnungsmodellen befinden sich die betrachteten Bauwerke in einer 100 m mächtigen Schicht aus Opalinuston, die zwischen Schichten der höherdurchlässigen Rahmengesteine liegt. Für die Tunnelstatik wird somit für alle Standorte konservativ angenommen, dass die dem Opalinuston direkt angrenzenden Rahmengesteine von höherer Durchlässigkeit als der Opalinuston sind. Der Abstand der Bauwerke zu den seitlichen Aussenrändern des Modells beträgt in jede Richtung mindestens 100 m (> 7-facher Durchmesser des grössten Querschnittes). Der Einfluss der Randbedingungen auf das Trag- und Verformungsverhalten der Bauwerke kann somit vernachlässigt werden.

2.1.2 Anfangs- und Randbedingungen

Aufgrund der hohen Durchlässigkeit der Rahmengesteine wird der Porenwasserdruck am Übergang des Opalinustons zum Rahmengestein entsprechend dem In-situ-Porenwasserdruck festgelegt. Ausserdem wird der Porenwasserdruck an den seitlichen Modellrändern ebenfalls entsprechend dem In-situ-Porenwasserdruck vorgegeben.

Die Überdeckung des Tiefenlagers ist standortabhängig und wird in den Berechnungsmodellen über einen isotropen und homogenen Primärspannungszustand berücksichtigt. An den Rändern des Gesamtmodells werden die Geschwindigkeiten der Elemente und damit die Verschiebungen in jeder Richtung fixiert.

Die mechanischen und hydraulischen Randbedingungen sind in Fig. 2-1 dargestellt.

Für detaillierte Angaben zu der Überdeckung, den Primärspannungen, den initialen Porenwasserdrücken sowie den geomechanischen Gebirgsparametern wird auf die Projektbasis Nagra (2023f) verwiesen.

Fig. 2-1: Randbedingungen und Geometrie der Berechnungsmodelle: SMA (links) und HAA (rechts)

2.1.3 Kontaktbedingung Verkleidung/Ausbruchsicherung – Baugrund

In allen Bauwerken, mit Ausnahme des Hauptlagers HAA, wird die Kontaktbedingung zwischen der Verkleidung/Ausbruchsicherung und dem umliegenden Gebirge gemäss den Angaben in Tab. 2-1 vorgegeben. Es wird eine Bettung der Verkleidung angenommen. Die Kontaktsteifigkeiten entsprechen der Gebirgssteifigkeit. Die gewählten Parameter garantieren die numerische Stabilität und erlauben eine Übertragung von Schubspannung, jedoch keine Übertragung von Zugspannung. Die Kontaktfestigkeiten ergeben sich aus den Gebirgseigenschaften und der Annahme, dass die Innenschale starr mit der Ausbruchsicherung verbunden ist. Zudem wird berücksichtigt, dass der Spritzbeton direkt auf die raue Ausbruchsfläche angebracht wird. Die Restkohäsion beruht auf der Annahme, dass sich die Kohäsion nach dem Erreichen der Schubfestigkeit sehr rasch abbaut und nur die Reibung mobilisiert wird.

Materialparameter	Wert	Einheit
Kopplungssteifigkeit, normal zum Ausbau	90'000	[MN/m ³]
Kopplungszugfestigkeit, normal zum Ausbau	0	[MN/m ³]
Schubsteifigkeit	90'000	[MN/m ³]
Kohäsion in der Kontaktfuge	0.25	$[MN/m^2]$
Restkohäsion in der Kontaktfuge	0.01	$[MN/m^2]$
Reibungswinkel in der Kontaktfuge	21	[°]

Tab. 2-1: Definition Kontaktbedingung zwischen Ausbruchsicherung und Baugrund

2.1.4 Berücksichtigung Porenwasser

In den Berechnungsmodellen wird grob zwischen zwei Phasen unterschieden:

- Kurzzeitverhalten: Während des Vortriebs erfolgt die Berechnung wegen der geringen hydraulischen Durchlässigkeit des Opalinustons undrainiert (keine Sickerströmung).
- Langzeitverhalten: In der Konsolidierungsphase nach dem Ausbruch erfolgt die Berechnung drainiert, sodass sich die Porenwasserüberdrücke, die sich während des Vortriebs gebildet haben, mit der Zeit abbauen können.

Am Ausbruchsrand wird nach dem Ausbruch ein atmosphärischer Porenwasserdruck vorgegeben. Die Berechnungen erfolgen in effektiven Spannungen.

Ein sogenanntes «suction cut-off» wird angewendet. Mit dem «suction cut-off» wird die Entsättigung im Nahbereich des Ausbruchsrandes infolge Rissbildung berücksichtigt, indem keine negativen Porenwasserdrücke zugelassen werden (siehe Projektbasis Nagra (2023f)).

Für die Kompressibilität des Porenwassers wird ein Kompressionsmodul von $K_w = 2.1$ GPa angesetzt.

2.2 Berechnungsmodell HAA

Gemäss den Angaben in der Projektbasis Nagra (2023f) enthält das Berechnungsmodell HAA folgende Bauwerke:

- Hauptlager HAA (Lagerstollen)
- Umladebereich HAA
- Lagerstollenabzweiger HAA
- Betriebstunnel HAA

In Fig. 2-2 wird die Abgrenzung des Berechnungsmodells gezeigt.

Fig. 2-2: Abgrenzung des Berechnungsmodells HAA

2.2.1 Normalprofile

Nachfolgend sind die vermassten Normalprofile, welche als Grundlage für die numerischen Berechnungen verwendet werden, in Fig. 2-3, Tab. 2-2, Tab. 2-3 und Tab. 2-4 zusammengestellt. Es wurden für alle Standorte die gleichen Ausbruchsgeometrien verwendet. Die Stärke des Ausbaus wurde nicht explizit modelliert, sondern den «Ausbauelementen» zugewiesen.

Es werden die Tragsysteme gemäss der Projektbasis Nagra (2023f) verwendet.

Fig. 2-3: Normalprofile Hauptlager HAA (links), Umladebereich HAA (Mitte) und Betriebstunnel HAA (rechts)

Tab. 2-2:	Geometrische A	ngaben für	das	Normalprofil	des	Hauptlagers	HAA,	die	für	alle
	Standorte gelten									

Beschreibung	Parameter	Wert	Einheit
Aussendurchmesser	Daussen	3.60	m
Aussenradius	Raussen	1.80	m
Innendurchmesser	D _{innen}	2.80	m
Innenradius	R _{innen}	1.40	m

Beschreibung	Parameter	Wert	Einheit
Aussendurchmesser	Daussen	7.40	m
Innendurchmesser	D _{innen}	6.60	m
Innenradius R1	R1 _{innen}	3.00	m
Innenradius R2	R2 _{innen}	3.90	m
Innenradius R3	R3 _{innen}	3.90	m
Innenradius R4	R4 _{innen}	2.70	m
Innenradius R5	R5 _{innen}	3.90	m
Innenradius R6	R6 _{innen}	3.90	m
Innenradius R7	R7 _{innen}	4.30	m
Innenradius R8	R8 _{innen}	3.40	m

Tab. 2-3:Geometrische Angaben für das Normalprofil des Umladebereichs HAA, die für alle
Standorte gelten

Tab. 2-4:Geometrische Angaben für das Normalprofil des Betriebstunnels HAA, die für alle
Standorte gelten

Beschreibung	Parameter	Wert	Einheit
Aussendurchmesser	Daussen	6.90	m
Aussenradius	Raussen	3.45	m
Innendurchmesser	Dinnen	6.80	m
Innenradius	R _{innen}	3.40	m

2.2.2 Kontaktbedingung zwischen Tübbing und Baugrund

Die zeitliche Entwicklung der Eigenschaften des Ringspaltmörtels wird über zwei Kopplungssteifigkeiten normal zum Tübbing zu zwei Zeitpunkten berücksichtigt. Die in Tab. 2-5 zusammengestellten Eigenschaften ergeben sich aus der Stärke des Ringspaltes und der zeitlichen Entwicklung der Mörtelsteifigkeit. Bei der Festlegung der Kontaktfestigkeitsparameter wird angenommen, dass der Tübbing starr mit dem Mörtel verbunden, die Kohäsion zur glatten Tübbingoberfläche vernachlässigbar und die Reibung durch einen konstanten Reibungswinkel bestimmt sind.

Materialparameter	Wert	Einheit
Initiale Kopplungssteifigkeit, normal zum Ausbau (zwischen 7 (Schildlänge) und 14 m hinter der Ortsbrust)	45'000	[MN/m ³]
Finale Kopplungssteifigkeit, normal zum Ausbau (ab 14 m hinter der Ortsbrust)	90'000	[MN/m ³]
Schubsteifigkeit	90'000	$[MN/m^2]$
Kopplungszugfestigkeit, normal zum Ausbau	0	[MN/m ³]
Kohäsion in der Kontaktfuge	0.01	[MN/m ²]
Restkohäsion in der Kontaktfuge	0.01	[MN/m ²]
Reibungswinkel in der Kontaktfuge	26	[°]

Tab. 2-5: Definition Kontaktbedingung zwischen Ringspaltmörtel und Baugrund

2.2.3 Räumliche Diskretisierung HAA

Die Geometrie wurde in der CAD-Software Rhinoceros 3D modelliert und die anschliessende Diskretisierung wurde mittels dem Netz-Generierungstool Griddle 2.0 (Itasca Consultants) umgesetzt. Die Vermaschung erfolgt mit bevorzugt hexaedrischen Elementen, sogenannten «Brick»-Elementen. Diese weisen eine höhere Genauigkeit gegenüber den einfachen tetraedrischen Elementen auf und sind mit den hexaedrischen, 20-knotigen Elementen der üblichen FE-Solver vergleichbar.

Das Modell wird in verschiedene Bereiche unterteilt, um einen graduellen Übergang der Kantenlänge vom Aussenrand des Modells bis zu den Bauwerken zu gewährleisten, wie der Fig. 2-4 entnommen werden kann.

An den Modellrändern werden Elemente mit einer durchschnittlichen Kantenlänge von 15 m verwendet. Elemente im Bereich 2 werden mit einer Kantenlänge von 5 m diskretisiert. Im Bereich 3 weisen die Elemente eine Kantenlänge von 2 m auf. Die Bauwerke werden mit einer Kantenlänge von 0.5 m diskretisiert.

Eine Übersicht der Diskretisierungsparameter für das Berechnungsmodell HAA ist in Tab. 2-6 zu finden.

Fig. 2-4: Räumliche Diskretisierung (Berechnungsmodell HAA)

Tab. 2-6:	Diskretisierungsparameter	für das Berechnungsmodell HAA
140.20.	Bisinetisierangsparameter	fur aus Bereenmangsmeaen in n

Beschreibung		Wert
Anzahl Elemente		767'893
Anzahl Knoten		410'228
Kantenlänge der Elemente	Bereich 1	15 m × 15 m × 15 m
	Bereich 2	$6 \text{ m} \times 6 \text{ m} \times 6 \text{ m}$
	Bereich 3	$2 \text{ m} \times 2 \text{ m} \times 2 \text{ m}$
	Bauwerke	$0.5 \text{ m} \times 0.5 \text{ m} \times 0.5 \text{ m}$

2.2.4 Berechnungsschritte

In Tab. 2-7 sind die einzelnen Berechnungsschritte, die den Bauvorgang in der Modellierung abbilden, aufgelistet und beschrieben. Für detailliertere Angaben zum Bauablauf wird auf den technischen Beschrieb Nagra (2023e) verwiesen.

Der nachgiebige Ausbau wird nicht explizit modelliert, sondern durch einen verzögerten Einbau der Verkleidung berücksichtigt.

Sickerströmungen werden ausschliesslich in den explizit mit «drainiert» gekennzeichneten Berechnungsschritten berücksichtigt. Angesichts der geringen Durchlässigkeit und der Zeithorizonte, welche im Modell untersucht worden sind, ist der Einfluss auf die Endergebnisse vernachlässigbar.

Nr.	Bauvorgang	Bemerkungen	Hydraulische Verhältnisse
1	Ausbruch Betriebstunnel	Der Ausbruch erfolgt schrittweise in	Undrainiert
2	Ausbruch Abzweiger 1	Abschlägen zu 3 m, nach jedem Abschlag wird bis zum Gleichgewichtskriterium	
3	Ausbruch Umlade- bereich 1	gerechnet.	
4	Ausbruch Schleusenbereich 1		
5	Ausbruch Lagerstollen 1	Der Vortrieb erfolgt schrittweise in Abschnitten zu 1 m, nach jedem Abschnitt wird bis zum Gleichgewichtskriterium gerechnet.	Undrainiert
6	Einbau Tübbing Lagerstollen 1	Zur Berücksichtigung des Schilds (Schild- länge 7 m) erfolgt der Einbau der Tübbinge im Lagerstollen erst 7 Abschnitte hinter der Orts- brust. Der Einbau der Tübbinge erfolgt schritt- weise in Abschnitten von 1 m.	Undrainiert
7	Konsolidierung	6 Monate Konsolidierung, infolge TBM- Montage/Demontage	Drainiert
8	Ausbruch Abzweiger 2	Der Ausbruch erfolgt schrittweise in	Undrainiert
9	Ausbruch Umlade- bereich 2	Abschlägen zu 3 m, nach jedem Abschlag wird bis zum Gleichgewichtskriterium gerechnet.	Undrainiert
10	Ausbruch Schleusenbereich 2		Undrainiert
11	Ausbruch Lagerstollen 2	Der Vortrieb erfolgt schrittweise in Abschnitten zu 1 m, nach jedem Abschnitt wird bis zum Gleichgewichtskriterium gerechnet.	Undrainiert
12	Einbau Tübbing Lagerstollen 2	Zur Berücksichtigung des Schilds (Schild- länge 7 m) erfolgt der Einbau der Tübbinge im Lagerstollen erst 7 Abschnitte hinter der Orts- brust. Der Einbau der Tübbinge erfolgt schritt- weise in Abschnitten von 1 m.	Undrainiert
13	Konsolidierung	6 Monate Konsolidierung, infolge TBM- Montage/Demontage	Drainiert
14	Einbau Verkleidung Betriebstunnel	Nach dem schrittweisen Einbau der gesamten Verkleidung (Nr. $14 - 20$) wird bis zum	Undrainiert
15	Einbau Verkleidung Abzweiger 1	Gleichgewichtskriterium gerechnet.	Undrainiert
16	Einbau Verkleidung Umladebereich 1		Undrainiert
17	Einbau Verkleidung Schleusenbereich 1		Undrainiert
18	Einbau Verkleidung Abzweiger 2		Undrainiert

 Tab. 2-7:
 Berechnungsschritte Berechnungsmodell HAA

Nr.	Bauvorgang	Bemerkungen	Hydraulische verhältnisse
19	Einbau Verkleidung Umladebereich 2		Undrainiert
20	Einbau Verkleidung Schleusenbereich 2		Undrainiert
21	Konsolidierung	100 Jahre Konsolidierung, Zwischenergebnisse nach 4 und 40 Jahren ⁷	Drainiert

2.3 Berechnungsmodell SMA

Gemäss den Angaben in der Projektbasis Nagra (2023f) enthält das Berechnungsmodell SMA folgende Bauwerke:

- Hauptlager SMA (Lagerkaverne)
- Übernahmebereich SMA
- Abladebereich SMA
- Lagerkavernenabzweiger SMA
- Betriebstunnel SMA

In Abbildung Fig. 2-5 ist die Abgrenzung des Berechnungsmodells gezeigt.

¹ Vorgegeben durch die Nutzungsdauer der zu bemessenden Bauwerke gemäss der Nutzungsvereinbarung Nagra (2023d).

Fig. 2-5: Abgrenzung des Berechnungsmodells SMA

2.3.1 Normalprofile

Nachfolgend sind die vermassten standortspezifischen Normalprofile, welche als Grundlage für die Berechnungen verwendet werden, in Fig. 2-6, Tab. 2-8, Tab. 2-9 und Tab. 2-10 zusammengestellt.

Fig. 2-6: Normalprofil Hauptlager SMA (links), Übernahmebereich SMA (Mitte) und Betriebstunnel SMA (rechts)

Beschreibung	Parameter	Wert	Einheit
Aussendurchmesser	Daussen	13.00	m
Aussenradius	Raussen	6.50	m
Innendurchmesser	Dinnen	12.40	m
Innenradius R1	R1 _{innen}	6.10	m
Innenradius R2	R2 _{innen}	10.30	m
Innenradius R3	R3 _{innen}	2.90	m
Innenradius R4	R4 _{innen}	8.40	m

Tab. 2-8:Geometrische Angaben f
ür das Normalprofil des Hauptlagers SMA, die f
ür alle
Standorte gelten

Tab. 2-9:	Geometrische Angaben für das Normalprofil des Übernahmebereichs SMA, die für	r
	alle Standorte gelten	

Beschreibung	Parameter	Wert	Einheit
Aussendurchmesser	Daussen	11.0	m
Innenradius R1	R1 _{innen}	9.40	m
Innenradius R2	R2 _{innen}	4.90	m
Innenradius R3	R3 _{innen}	3.30	m

Tab. 2-10:Geometrische Angaben f
ür das Normalprofil des Betriebstunnels SMA, die f
ür alle
Standorte gelten

Beschreibung	Parameter	Wert	Einheit
Aussendurchmesser	Daussen	6.90	m
Aussenradius	Raussen	3.45	m
Innendurchmesser	D _{innen}	6.80	m
Innenradius	R _{innen}	3.40	m

2.3.2 Modellierungsannahmen: nachgiebiger Ausbau Hauptlager SMA

Beim Hauptlager SMA wird der nachgiebige Ausbau mit TH-Stahlbögen im Berechnungsmodell explizit mittels Strukturelementen, sogenannten «pile elements», modelliert. Diese weisen eine Normal- und Biegesteifigkeit auf und können bei vorgegebener Belastung intern auf Druck oder Zug versagen. Sie werden in Längs- und Querrichtung mit dem Gebirge am Ausbruchsrand gekoppelt. Die Kopplungssteifigkeit und -festigkeit entspricht derjenigen des Gebirges, wobei bei der Bestimmung der Werte der Umfang des Stahlbogens berücksichtigt wird. Somit wird gewährleistet, dass der Bogen bei Belastung senkrecht zur lokalen Bogenachse trägt und sich beim Stauchen verformen kann. Die Gleitschlosskapazität von 300 kN wird durch die Eingabe der maximal aufnehmbaren Normalkraft von 300 kN für die Pile-Elemente abgebildet. Es wurde ein Bogen aus Pile-Elementen pro Laufmeter der Kaverne eingebaut. Die axiale Steifigkeit vor dem Fliessen wird mithilfe des E-Moduls und der Querschnittfläche, welche den Elementen zugewiesen werden, bestimmt. Anders als bei den realen Stahlbögen ist in der Modellierung bei den Elementen keine maximale Verformung vorgegeben, sodass sich diese nach der Überschreitung der maximalen Normalkraft unendlich radial verformen können. Die Werte für die plastischen Momente werden über die statischen Kennwerte für TH-36-Stahlbögen vorgegeben. Es werden die Parameter gemäss Tab. 2-11 verwendet.

Materialparameter	Wert	Einheit
Kopplungssteifigkeit, in Längsrichtung des Bogens	54'857 ²	[MN/m ²]
Kopplung Kohäsion, in Längsrichtung des Bogens	0	[MN/m ²]
Kopplung Reibung, in Längsrichtung des Bogens	26	[°]
Kopplungssteifigkeit, normal zum Bogen	54'857	[MN/m ²]
Kopplung Kohäsion, normal zum Bogen	1'000	[MN/m ²]
Kopplung Reibung, normal zum Bogen	26	[°]
Maximale Druckkraft des Elements	300	[kN]
Plastisches Moment (schwache Achse)	36.9	[kNm]
Plastisches Moment (starke Achse)	40.5	[kNm]
E-Modul	210'000	[MN/m ²]
Querschnittfläche	45.7	[cm ²]
Zugfestigkeit des Elements	0	[kN]

Tab. 2-11: Materialparameter der «pile elements» für das Hauptlager SMA

2.3.3 Räumliche Diskretisierung SMA

Die Vorgehensweise bei der räumlichen Diskretisierung und die Wahl der Elemente bei dem Berechnungsmodell SMA sind ähnlich zu jenen des Berechnungsmodells HAA (Kap. 2.2.3).

Das Modell wird in zwei Bereiche unterteilt, um einen graduellen Übergang der Kantenlänge vom Aussenrand des Modells bis zu den Bauwerken zu gewährleisten, wie der Fig. 2-7 entnommen werden kann.

An den Modellrändern wurden Elemente mit einer durchschnittlichen Kantenlänge von 15 m verwendet. Die Elemente im Bereich 2 werden mit einer Kantenlänge von 5 m diskretisiert. Die Bauwerke werden mit einer Kantenlänge von 1 m diskretisiert.

Eine Übersicht der Diskretisierungsparameter für das Berechnungsmodell SMA ist in Tab. 2-12 zu finden.

² Dieser Wert ergibt sich als das Produkt der Kopplungssteifigkeit, in Längsrichtung des Bogens und dem Umfang der Stahlbögen, der 0.609 m beträgt.

Fig. 2-7: Räumliche Diskretisierung (Berechnungsmodell SMA)

Tab. 2-12: Diskretisierungsparameter für das Berechnungsmodell SMA

Beschreibung		Wert
Anzahl Elemente		503'018
Anzahl Knoten		318'907
Kantenlänge der Elemente	Bereich 1	15 m × 15 m × 15 m
	Bereich 2	$5 \text{ m} \times 5 \text{ m} \times 5 \text{ m}$
	Bauwerke	$1 \text{ m} \times 1 \text{ m} \times 1 \text{ m}$

2.3.4 Berechnungsschritte

In Tab. 2-13 sind die einzelnen Berechnungsschritte, die den Bauvorgang in der Modellierung abbilden, beschrieben. Für detailliertere Angaben zum Bauablauf wird auf den technischen Beschrieb Nagra (2023e) verwiesen.

Der nachgiebige Ausbau wird in allen Bauwerken, mit Ausnahme der Lagerkaverne SMA, nicht explizit modelliert, sondern durch einen verzögerten Einbau der Verkleidung berücksichtigt.

Sickerströmungen werden ausschliesslich in den explizit mit «drainiert» gekennzeichneten Rechenschritten berücksichtigt. Angesichts der geringen Durchlässigkeit und der Zeithorizonte, welche im Modell untersucht worden sind, ist der Einfluss auf die Endergebnisse vernachlässigbar.

Nr.	Bauvorgang	Bemerkungen	Hydraulische verhältnisse
1	Ausbruch Betriebstunnel durchgehend	Der Ausbruch erfolgt schrittweise in Abschlägen zu 3 m, nach jedem Abschlag	Undrainiert
2	Ausbruch Lagerkavernenzugang 3	wird bis zum Gleichgewichtskriterium gerechnet.	Undrainiert
3	Ausbruch Abladebereich 3		Undrainiert
4	Ausbruch Übernahmebereich 3		Undrainiert
5	Ausbruch SMA Kaverne 3, mit nachgiebigem Ausbau	Der Ausbruch erfolgt schrittweise in Abschlägen zu 2 m. Zunächst wird die Kalotte ausgebrochen und anschliessend ein «pile element» aktiviert. Dann wird bis zum Gleich- gewichtskriterium gerechnet. Im nächsten Schritt wird die Strosse/Sohle ausgebrochen, danach dort ein «pile element» aktiviert und anschliessend bis zum Gleichgewichts- kriterium gerechnet.	Undrainiert
6	Ausbruch Lagerkavernenzugang 4	Der Ausbruch erfolgt schrittweise in Abschlägen zu 3 m, nach jedem Abschlag	Undrainiert
7	Ausbruch Abladebereich 4	wird bis zum Gleichgewichtskriterium gerechnet.	Undrainiert
8	Ausbruch Übernahmebereich 4		Undrainiert
9	Ausbruch SMA Kaverne 4, mit nachgiebigem Ausbau	Der Ausbruch erfolgt schrittweise in Abschlägen zu 2 m. Zunächst wird die Kalotte ausgebrochen und anschliessend ein «pile element» aktiviert. Dann wird bis zum Gleich- gewichtskriterium gerechnet. Im nächsten Schritt wird die Strosse/Sohle ausgebrochen, danach dort ein «pile element» aktiviert und anschliessend bis zum Gleichgewichts- kriterium gerechnet.	Undrainiert
10	Einbau Verkleidung Betriebstunnel	Nach dem schrittweisen Einbau der gesamten Verkleidung (Nr. $10 - 16$) wird bis zum	Undrainiert
11	Einbau Verkleidung Lagerkavernenzugang 3	Gleichgewichtskriterium gerechnet.	Undrainiert
12	Einbau Verkleidung Abladebereich 3		Undrainiert
13	Einbau Verkleidung Übernahmebereich 3		Undrainiert
14	Einbau Verkleidung Lagerkavernenzugang 4		Undrainiert
15	Einbau Verkleidung Abladebereich 4		Undrainiert
16	Einbau Verkleidung Übernahmebereich		Undrainiert

Tab. 2-13: Berechnungsschritte Berechnungsmodell SMA

Tab.2-13: Fortsetzung

Nr.	Bauvorgang	Bemerkungen	Hydraulische verhältnisse
17	Konsolidierung 4 Monate, Abschaltung der nachgiebigen Stahlbögen	4 Monate Konsolidierung	Drainiert
18	Ortbeton SMA Kaverne 3	Der Ortbeton wird schrittweise eingebaut und die «pile elements» werden deaktiviert.	Undrainiert
19	Ortbeton SMA Kaverne 4	Der Ortbeton wird schrittweise eingebaut und die «pile elements» werden deaktiviert.	Undrainiert
20	Konsolidierung	100 Jahre Konsolidierung, Zwischenergebnisse nach 25 und 50 Jahren ³	Drainiert

³ Vorgegeben durch die Nutzungsdauer der zu bemessenden Bauwerke gemäss der Nutzungsvereinbarung Nagra (2023d).

3 2D-Berechnungsmodell

Für die Beurteilung der Machbarkeit der Bauverfahren und die Bemessung der Schachtbauwerke auf den echten Gebirgsdruck wird ein zweidimensionales Berechnungsmodell in der FDM-Software Flac2D (Itasca Consultants) erstellt. In dem Berechnungsmodell werden Berechnungen zum einen mit dem Ausbruchsdurchmesser des Betriebsschachts und zum anderen mit dem des Lüftungsschachts durchgeführt. Da es am Standort JO keinen Betriebsschacht gibt, wird dort nur mit dem Durchmesser des Lüftungsschachts gerechnet. Die standortspezifische Tiefenlage wird auch in diesem Modell in den geomechanischen Parametern und in dem Primärspannungszustand berücksichtigt.

3.1 Generelle Annahmen für die numerische Modellierung

3.1.1 Modellgeometrie

In dem Berechnungsmodell wird nur das Schachtbauwerk und nicht der Schachtfussbereich betrachtet. Es befindet sich im Opalinuston und der Abstand des Bauwerks zu den Aussenrändern beträgt in jede Richtung 100 m. Der Einfluss der Randbedingungen auf das Trag- und Verformungsverhalten der Bauwerke kann somit vernachlässigt werden. In Fig. 3-1 sind die Abmessungen des Bauwerks dargestellt.

Aufgrund der Rotationssymmetrie wird nur ein Viertel des Schachtes modelliert und die Symmetriebedingungen mittels Randbedingungen eingeführt.

Fig. 3-1: Abgrenzung des Berechnungsmodells, hier am Beispiel des Betriebsschachts

3.1.2 Anfangs- und Randbedingungen

Das Modell wird mit der Annahme eines ebenen Verzerrungszustands erstellt. In dem Modell wird ein Schnitt auf der Höhe des Schachtfusses betrachtet. Die Tiefe des Schachtfusses ist standortabhängig und wird in dem Berechnungsmodell über einen isotropen und homogenen Primärspannungszustand und dem In-situ-Porenwasserdruck berücksichtigt. An den Rändern des

Modells werden die Geschwindigkeiten der Elemente und damit die Verschiebungen in jeder Richtung fixiert.

Da die Schichtung senkrecht zum betrachteten Schnitt verläuft, gelten für die Gebirgsparameter die Matrixparameter für die Festigkeit und die standortspezifischen Steifigkeitsparameter parallel zur Schichtung.

3.1.3 Kontaktbedingungen Verkleidung/Ausbruchsicherung – Baugrund

Die Kontaktbedingung zwischen der Verkleidung/Ausbruchsicherung und dem umliegenden Gebirge wird gemäss den Angaben in Tab. 3-1 modelliert. Für die Ermittlung der Werte gelten dieselben Annahmen, die in Kapitel 2.1.3 angegeben sind.

Tab. 3-1: Definition Kontaktbedingung zwischen Ausbruchsicherung und Baugrund

Materialparameter	Wert	Einheit
Kopplungssteifigkeit, normal zum Ausbau	90'000	[MN/m ³]
Kopplungszugfestigkeit, normal zum Ausbau	0	[MN/m ³]
Schubsteifigkeit	90'000	[MN/m ³]
Kohäsion in der Kontaktfuge	0.25	[MN/m ²]
Restkohäsion in der Kontaktfuge	0.01	[MN/m ²]
Reibungswinkel in der Kontaktfuge	21	[°]

3.1.4 Berücksichtigung Porenwasser

Das Porenwasser wird in dem Berechnungsmodell analog zu den 3D-Berechnungsmodellen gemäss den Angaben in Kapitel 2.1.4 berücksichtigt.

3.1.5 Modellierungsannahme nachgiebiger Ausbau

In diesem Modell wird der nachgiebige Ausbau nicht explizit modelliert, sondern durch einen verzögerten Einbau der Verkleidung berücksichtigt. Der Ausbauwiderstand der TH-Stahlbögen vor dem Einbau der Verkleidung wird jedoch mittels eines Innendrucks in der Höhe von 1.2 MPa berücksichtigt.

Die maximal aufnehmbare Normalkraft pro Lasche eines Gleitschlosses beträgt 300 kN. Dieser Wert wird mit mithilfe der Kesselformel umgerechnet. Die Umrechnung ergibt den Wert des Innendrucks, welcher als Ausbauwiderstand berücksichtigt wird.

3.2 Normalprofil

Nachfolgend ist das standortspezifische Normalprofil, welches als Grundlage für die Berechnungen verwendet wird, in Fig. 3-2 und Tab. 3-2 zusammengestellt. Da sich das Modell an den Standorten NL und ZNO an der Geometrie des Betriebsschachts und an dem Standort JO an dem des Lüftungsschachts orientiert, unterscheiden sich die angegebenen Durchmesser.

Fig. 3-2: Normalprofil Schächte

Tab. 3-2: Geometrische Angaben für das Normalprofil der Schächte

Beschreibung	Parameter	Betriebsschacht		Lüftungsschacht			Einheit
Standort		NL	ZNO	NL	ZNO	JO	
Aussendurchmesser	Daussen	12.40	12.00	7.30	8.10	7.80	m
Innenradius R1	R1 _{innen}	4.75	4.75	3.00	3.00	3.00	m
Innenradius R2	R2 _{innen}	5.95	5.75	3.40	3.80	3.65	m

3.3 Räumliche Diskretisierung

Das Modell wurde analog zu den in Kapitel 2.2.3 und 2.3.3 beschriebenen 3D-Modellen mit abgestufter Netzfeinheit diskretisiert. Die Zonen im Nahbereich des Hohlraums sind die kleinsten und weisen eine durchschnittliche Kantenlänge von ca. 0.3 m auf. Das Modell besteht aus 60 Elementen in jede Richtung (x-Richtung/y-Richtung). Somit beträgt die Anzahl der Elemente 3'600.

Das Modell kann der Fig. 3-3 entnommen werden.

Fig. 3-3: Diskretisierung (Berechnungsmodell Schacht)

3.4 Berechnungsschritte

In Tab. 3-3 sind die einzelnen Berechnungsschritte, die den Bauvorgang in der Modellierung abbilden, aufgelistet und beschrieben. Für detailliertere Angaben zum Bauablauf wird auf den technischen Beschrieb Nagra (2023e) verwiesen.

Analog zu den 3D-Berechnungsmodellen werden Sickerströmungen ausschliesslich in den explizit mit «drainiert» gekennzeichneten Berechnungsschritten berücksichtigt. Angesichts der geringen Durchlässigkeit und der Zeithorizonte, welche im Modell untersucht worden sind, ist der Einfluss auf die Endergebnisse vernachlässigbar.

Nr.	Bauvorgang	Bemerkungen	Hydraulische Verhältnisse
1	Ausbruch des Schachtes, Reduktion des Innendrucks am Ausbruchsrand auf den Ausbauwiderstand der Gleitschlösser	Die Reduktion des Innendrucks erfolgt schrittweise in 100 Schritten,nach jedem Berechnungsschritt wird bis zum Gleichgewichtskriterium gerechnet.	undrainiert
2	Einbau der Verkleidung	Nach dem Einbau der Verkleidung und der Entlastung des Ausbruchrands auf 0 wird bis zum Gleichgewichtskriterium gerechnet.	undrainiert
3	Konsolidierung	100 Jahre Konsolidierung, Zwischenergebnisse nach 50 Jahren ⁴	drainiert

Tab. 3-3: Berechnungsschritte Berechnungsmodell Schacht

⁴ Vorgegeben durch die Nutzungsdauer der zu bemessenden Bauwerke gemäss der Nutzungsvereinbarung Nagra (2023d).

4 Bemessung der Machbarkeit und Tragsicherheit

4.1 Bemessungssituationen/Grenzzustände der Tragsicherheit

Die Nachweisführung der Tragwerke erfolgt gemäss SIA 262 (2013). Die Normalkraft in der Umfangsrichtung des Tunnels und das Biegemoment um die Längsachse des Tunnels werden als bemessungsrelevant festgelegt und im Nachweis berücksichtigt. Die Vorzeichenkonvention und das lokale Koordinatensystem in den spezifischen Schnitten sind in den Anhängen C – K dargestellt. Die Definition der Schnittebenen im Berechnungsmodell HAA und SMA sind in Fig. 4-1 dargestellt. Die genaue Position der Schnittebenen ist den Anhängen C – K angegeben. Für die Auswertung der Schnittkräfte und der Verschiebungen am Ausbruchsrand sind nur die Schnitte A, B und 1, 2 relevant. Die anderen Schnitte werden für die Darstellung der Spannungsverläufe verwendet und sind für die Bemessung nicht massgebend. Bei dem Modell der Schachtbauwerke wird nur ein Schnitt am Schachtfuss betrachtet.

Fig. 4-1: Graphische Darstellung der gewählten Schnitte für das Auslesen der Schnittkräfte im Berechnungsmodell HAA (links) und SMA (rechts)

Die Berechnungen erfolgen gemäss der Projektbasis Nagra (2023f) mit den charakteristischen Kennwerten des Gebirges.

4.2 Bemessung Hauptlager HAA (Lagerstollen)

4.2.1 Bestimmung des erforderlichen Überschnitts

Die Bestimmung des erforderlichen Überschnitts zwischen Ausbruchsrand und TBM-Schild erfolgt auf charakteristischem Niveau.

In Tab. 4-1 ist die ermittelte Verschiebung des Ausbruchsrandes nach Ortsbrustdurchgang (Bohrkopf) und hinter dem Schild im Hauptlager HAA aufgelistet. Als Verformung wird der Maximalwert der radialen Verschiebungen in der Firste und der Sohle im massgebenden Schnitt bestimmt. Weitere Details können 9Anhang C, 9Anhang F und 9Anhang I entnommen werden.

Die ermittelte Verschiebung im Bereich des Schildes entspricht dem erforderlichen Überschnitt um einen Kontakt des Baugrunds mit dem Schild und damit auch um ein Verklemmen des Schilds während des Vortriebs zu verhindern. Der erforderliche Überschnitt liegt standortspezifisch zwischen 0.5 und 1.5 cm. Um auch bei einem Stillstand der TBM oder dem Antreffen einer nicht kartierten Störungszone das Verklemmen des Schildes zu verhindern, wird für alle Standorte ein Überschnitt von 5.0 cm gewählt.
Zeitpunkt	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
Direkt an der Ortbrust (undrainiert)	1.0	2.6	1.9
Beim Schildende (undrainiert)	1.6	3.9	2.9
Gesamtverschiebung nach Ausbruch	0.6	1.3	1.0
Empfehlung Überschnitt	5.0	5.0	5.0

Tab. 4-1: Zusammenfassung der Ergebnisse der am Ausbruchsrand ermittelten Verschiebungen

4.2.2 Nachweis der Tragsicherheit

Die Tragsicherheitsnachweise der Ausbruchsicherung und des Ausbaus im Endzustand werden gemäss SIA 262 (2013) für den Grenzzustand Typ 2 geführt.

Die Nachweise für Biegung und Normalkraft im Grenzzustand der Tragsicherheit werden für die gewählte Lastfallkombination nach SIA 262 (2013) durchgeführt. Die Auslastung (Verhältnis von Beanspruchung zu Widerstand) im Bemessungsquerschnitt der Ausbauelemente wird über ein M/N-Interaktionsdiagramm bestimmt.

Nachweis der Tragsicherheit des Ausbaus

Für den Nachweis werden die charakteristischen Schnittkräfte aus der numerischen Berechnung gemäss der Projektbasis mit einem Sicherheitsfaktor von $\gamma = 1.35$ multipliziert. Für den Nachweis werden die Normalkräfte in Umfangsrichtung in Kombination mit den Biegemomenten längs zur Tunnelachse verwendet. Der Nachweis der Tragsicherheit ist erbracht, wenn der Spannungszustand in allen Knoten der Ausbauelemente die folgende Bedingung erfüllt:

$$\frac{N_{Ed}}{N_{pl,Rd}} + \frac{M_{y,Rd}}{M_{y,Rd}} < 1.0$$

Alle Spannungskombinationen aus Normalkraft in Umfangsrichtung und Biegemoment in Tunnelachse fallen somit in die Umhüllenden des Bemessungsquerschnitts. Es gilt:

In Tab. 4-2 sind die massgebenden Ergebnisse aufgelistet. Details können Anhang C, Anhang F und Anhang I entnommen werden.

Standort	Ort, Zeitpunkt	Stärke [cm]	N _{ed} [kN]	M _{ed} [kN/m]	eff(N	M,N)
JO	Schnitt 2, 4 Jahre	25	-4'952.9	-13.5	0.643	Erfüllt
NL	Schnitt 2, 4 Jahre	40	-9'145.6	25.2	0.737	Erfüllt
ZNO	Schnitt 2, 4 Jahre	35	-7'346.1	-6.0	0.675	Erfüllt

Tab. 4-2: Ergebnisse Nachweis für Biegung und Normalkraft (Tübbingausbau, C60/75)

Nachweis der Tragsicherheit der Längsfuge des Tübbings

Für den Nachweis der Teilflächenpressung im Bemessungsquerschnitt wird ein Randabstand (berg- und hohlraumseitig) von 5.0 cm angenommen. Die einwirkende Spannungskombination aus Normalkraft in Umfangsrichtung und Biegemoment um die Tunnelachse wird mit einem Sicherheitsfaktor von $\gamma = 1.35$ multipliziert. Eine Überprüfung der Rotation der Längsfugen infolge ausmittiger Belastung wird in der gegenwärtigen Projektphase nicht geführt. Die Nachweise der Teilflächenpressung werden mit der Berücksichtigung der Schnittkraftexzentrizität geführt. Detaillierte Angaben zu der Nachweisführung sind in Anhang A und zu den standortspezifischen Ergebnissen in Anhang C, Anhang F und Anhang I zu finden.

Der Nachweis der Tragsicherheit ist erbracht, wenn die Kontaktspannung σ_d auf Bemessungsniveau kleiner als die maximal aufnehmbare Spannung der Tübbinge σ_r ist:

$$\frac{\sigma_d}{\sigma_r} < 1.0$$

Tab. 4-3:Ergebnisse Fugennachweis für Biegung und Normalkraft (Tübbingausbau, C60/75)
nach 4 Jahren

Standort	Ort	Stärke [cm]	N _{ed} [kN]	M _{ed} [kN/m]	eff(N	M,N)
JO	Nachweis in der Fuge	25	-4'952.9	-13.5	0.846	Erfüllt
NL	Nachweis in der Fuge	40	-9'145.6	25.2	0.878	Erfüllt
ZNO	Nachweis in der Fuge	35	-7'346.1	-6.0	0.828	Erfüllt

4.3.1 Bestimmung des Mehrausbruchs der nachgiebigen Ausbruchsicherung aus den 3D-Berechnungsmodellen

In den Tabellen Tab. 4-4, Tab. 4-5, Tab. 4-6, Tab. 4-7, Tab. 4-8, Tab. 4-9 sind die ermittelten Verschiebungen des Ausbruchsrandes an der Ortsbrust und vor dem Einbau der Verkleidung aufgelistet. Die Verformungen ergeben sich aus dem Mittelwert der vertikalen Verschiebungen aus Firste und Sohle im massgebenden Schnitt zu den jeweiligen Zeitpunkten, die für die Bestimmung des Mehrausbruchs notwendig sind. Weitere Details können Anhang C, Anhang D, Anhang F, Anhang G, Anhang I und Anhang J entnommen werden.

Tab. 4-4:Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehr-
ausbruchs für den Umladebereich HAA

Ort	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
Direkt an der Ortbrust (undrainiert)	1.1	2.2	1.7
HAA Schnitt C (vor Einbau Spritzbeton)	4.9	14.3	9.8
Gesamtverschiebung nach Ausbruch	3.8	12.1	8.1
Wahl Mehrausbruch	5.0	15.0	10.0

Tab. 4-5:Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehr-
ausbruchs für den Betriebstunnel HAA

Zeitpunkt	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
Direkt an der Ortbrust (undrainiert)	2.0	5.3	3.7
HAA Schnitt A (vor Einbau Spritzbeton)	5.9	16.8	11.8
Gesamtverschiebung nach Ausbruch	3.9	11.5	8.1
Wahl Mehrausbruch	5.0	15.0	10.0

Zeitpunkt	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
Direkt an der Ortbrust (undrainiert)	2.2	5.0	3.5
SMA Schnitt D (vor Einbau Spritzbeton)	10.1	23.6	17.3
Gesamtverschiebung nach Ausbruch	7.9	18.6	13.8
Wahl Mehrausbruch	10.0	20.0	15.0

Tab. 4-6:Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehr-
ausbruchs für die Lagerkaverne des Hauptlagers SMA

Tab. 4-7:	Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Meh	r-
	ausbruchs für den Übernahmebereich	

Zeitpunkt	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
Direkt an der Ortbrust (undrainiert)	1.1	2.4	1.8
SMA Schnitt C (vor Einbau Spritzbeton)	4.1	9.6	7.2
Gesamtverschiebung nach Ausbruch	3.0	7.2	5.4
Wahl Mehrausbruch	5.0	10.0	10.0

Tab. 4-8:Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehr-
ausbruchs für den Betriebstunnel SMA

Zeitpunkt	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
Direkt an der Ortbrust (undrainiert)	1.0	2.0	1.6
SMA Schnitt A (vor Einbau Spritzbeton)	4.3	10.2	7.5
Gesamtverschiebung nach Ausbruch	3.3	8.2	5.9
Wahl Mehrausbruch	5.0	10.0	10.0

4.3.2 Bestimmung des Mehrausbruchs der nachgiebigen Ausbruchsicherung aus dem 2D-Berechnungsmodell

Bei dem 2D-Berechnungsmodell ist es nicht möglich die Vorverformungen zu ermitteln. Daher werden für die Berechnung des Mehrausbruchs die ermittelten Werte des 3D-Berechnungsmodells an Bauwerken mit ähnlichen Geometrien als Grundlage verwendet. Dafür wird die folgende Formel angewendet:

 $Mehrausbruch_{Schacht} = \frac{Mehrausbruch_{Tunnel}}{Gesamtverformung_{Tunnel}}Gesamtverformung_{Schacht}$

wobei die Werte für den *Mehrausbruch*_{Tunnel} und *Gesamtverformung*_{Tunnel} den ermittelten Werten geeigneter Analogiebauwerke entsprechen und *Gesamtverformung*_{Schacht} aus dem 2D-Berechnungsmodell entnommen wird. Die sich daraus ergebenden Werte für den Mehrausbruch sind Tab. 4-9 und Tab. 4-10 zu entnehmen. Für den Lüftungsschacht wird wegen der Spannweite als Analogiebauwerk der Betriebstunnel SMA und für den Betriebsschacht der Umladebereich SMA verwendet. Die ermittelten Werte für den Mehrausbruch liegen zwischen 0.5 und 4 cm. Aus technischen Gründen wird empfohlen einen generellen Mehrausbruch von 5 cm zu berücksichtigen.

Zeitpunkt/Bauwerk	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
$Gesamtverformung_{Betriebstunnel}$	4.3	10.2	7.5
$Mehrausbruch_{Betriebstunnel}$	3.3	8.2	5.9
$Gesamtverformung_{L\"uftungsschacht}$	0.8	3.2	1.6
Mehrausbruch _{Schacht}	0.6	2.6	1.3
Wahl Mehrausbruch	5.0	5.0	5.0

Tab. 4-9:Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehr-
ausbruchs für den Lüftungsschacht unter Verwendung der Ergebnisse des Betriebs-
tunnels SMA

Tab. 4-10: Zusammenfassung der Ergebnisse der Verschiebungen und des gewählten Mehrausbruchs für den Betriebsschacht unter Verwendung der Ergebnisse des Übernahmebereichs SMA

Zeitpunkt / Bauwerk	Verformungen JO [cm]	Verformungen NL [cm]	Verformungen ZNO [cm]
$Gesamtverformung_{Betriebstunnel}$	-	9.6	7.2
$Mehrausbruch_{Betriebstunnel}$	-	7.2	5.4
$Gesamtverformung_{L\"uftungsschacht}$	-	4.9	2.8
Mehrausbruch _{Schacht}	-	3.7	2.1
Wahl Mehrausbruch	-	5.0	5.0

4.3.3 Nachweis der Tragsicherheit

Die Nachweise für Biegung und Normalkraft im Grenzzustand der Tragsicherheit erfolgen analog dem im Kapitel 4.2.2 dargestellten Vorgehen. Die zugehörigen M/N-Interaktionsdiagramme sind in Anhang C, Anhang D, Anhang F, Anhang G, Anhang I und Anhang J zu finden.

Tab. 4-11:Ergebnisse des Nachweises für Biegung und Normalkraft für den Umladebereich
HAA (Spritzbeton C30/37) in Schnitt 1 nach 40 Jahren

Standort	Stärke [cm]	N _{ed} [kN]	M _{ed} [kN/m]	eff(N	M,N)
JO	35	-5'912.0	-13.7	0.86	Erfüllt
NL	50	-9'768.8	25.9	0.98	Erfüllt
ZNO	45	-8'377.9	-2.2	0.93	Erfüllt

Tab. 4-12:Ergebnisse des Nachweises für Biegung und Normalkraft für den Betriebstunnel
HAA (Spritzbeton C30/37) in Schnitt A nach 40 Jahren

Standort	Stärke [cm]	N _{ed} [kN]	M _{ed} [kN/m]	eff(M,N)	
JO	35	-5'064.3	-48.5	0.78	Erfüllt
NL	50	-8'554.1	-56.8	0.92	Erfüllt
ZNO	45	-7'345.2	-47.5	0.87	Erfüllt

Standort	Stärke [cm]	N _{ed} [kN]	Med [kN/m]	eff(M,N)	
JO	40	-7'608.0	106.0	0.98	Erfüllt
NL	40	-7'411.0	-22.0	0.92	Erfüllt
ZNO	40	-6'907.3	-62.2	0.91	Erfüllt

Tab. 4-13:Ergebnisse des Nachweises für Biegung und Normalkraft für die SMA-Lager-
kaverne (Ortbeton C30/37) in Schnitt D nach 25 Jahren

Tab. 4-14:Ergebnisse des Nachweises für Biegung und Normalkraft für den Übernahmebereich
SMA (Spritzbeton C30/37) in Schnitt C nach 25 Jahren

Standort	Stärke [cm]	N _{ed} [kN]	M _{ed} [kN/m]	eff(M,N)	
JO	35	-5'718.7	-3.9	0.82	Erfüllt
NL	50	-8'604.8	40.3	0.88	Erfüllt
ZNO	45	-7'496.0	26.4	0.85	Erfüllt

Tab. 4-15:Ergebnisse des Nachweises für Biegung und Normalkraft für den Betriebstunnel
SMA (Spritzbeton C30/37) in Schnitt A nach 50 Jahren

Standort	Stärke [cm]	N _{ed} [kN]	M _{ed} [kN/m]	eff(M,N)	
JO	35	-5'896.8	-15.9	0.862	Erfüllt
NL	50	-9'660.4	16.7	0.978	Erfüllt
ZNO	45	-8'290.5	-8.5	0.931	Erfüllt

Tab. 4-16: Ergebnisse des Nachweises für Biegung und Normalkraft für die Betriebsschächte (Spritzbeton C30/37) nach 100 Jahren (am Standort JO ist kein Betriebsschacht geplant)

Standort	Stärke [cm]	N _{ed} [kN]	Med [kN/m]	eff(M,N)	
JO	-	-	-	-	
NL	120	-22'099.2	-61.0	0.944	Erfüllt
ZNO	100	-16'620.7	-115.9	0.860	Erfüllt

Standort	Stärke [cm]	N _{ed} [kN]	M _{ed} [kN/m]	eff(M,N)	
JO	40	-7'124.7	-10.3	0.918	Erfüllt
NL	80	-14'293.7	-54.5	0.925	Erfüllt
ZNO	65	-12'260.4	-18.3	0.964	Erfüllt

Tab. 4-17:Ergebnisse des Nachweises für Biegung und Normalkraft für die Lüftungsschächte
(Spritzbeton C30/37) nach 100 Jahren

5 Bemessung der Gebrauchstauglichkeit

Der Nachweis der Gebrauchstauglichkeit wird nach SIA 262 (2013) auf charakteristischem Niveau durchgeführt. Für den Bemessungsquerschnitt wird die Umhüllende der maximal zulässigen Werte für das Moment und die Normalkraft gebildet. Die Umhüllende stellt den Grenzzustand der Tragsicherheit eff(M,N) = 1.0 dar. Liegen die im Modell errechneten M/N-Lastkombinationen innerhalb der Umhüllenden, gilt für alle Lastkombinationen:

$$eff(M,N) < 1.0$$

Die bei der Nachweisführung zu Grunde gelegte Umhüllende definiert jenen Bereich, in welchem sämtliche Schnittkraftkombinationen zu einem Betonquerschnitt im Zustand I (ungerissener Zustand) führen. Falls die Schnittkraftkombinationen in der Umhüllenden liegen, bleibt der Querschnitt ungerissen und der Nachweis der Rissweitenbegrenzung gemäss SIA 262 (2013) kann entfallen.

Der Nachweis ist in allen Schnitten eingehalten und ist für die einzelnen Bauwerke im Anhang C, Anhang D, Anhang F, Anhang G, Anhang I und Anhang J im Detail zu finden.

6 Bemessung der weiteren Bauwerke mittels Analogieschlüssen

Die numerischen Berechnungsergebnisse werden mit Analogieschlüssen auch für die Bemessung der nicht in den Berechnungsmodellen enthaltenen Bauwerke im Opalinuston verwendet. Das bedeutet, z. B. dass die Schnittkräfte eines im Berechnungsmodell enthaltenen Bauwerks, z. B. des Betriebstunnels HAA, für die Bemessung eines ähnlichen Bauwerks, z. B. des Lüftungstunnels HAA, verwendet werden. Die Analogieschlüsse erfolgen unter Berücksichtigung von folgenden Faktoren:

- Querschnittsgrösse und Ausbautyp (die Sicherung und der dauerhafte Ausbau vom nächstgrösseren, gerechneten Querschnitt wird für den nicht gerechneten Querschnitt übernommen)
- Nähe zu den Bestandsbauwerken und die zu erwartende gegenseitige Beeinflussung
- Querschnittsform
- Nutzungsdauer

Bei den Analogieschlüssen werden zwei Vorgehensweisen angewendet:

- «Direkte Analogie» die Nutzungsdauer des im Berechnungsmodell enthaltenen und des betrachteten Bauwerks stimmt überein. Aus diesem Grund ist keine Anpassung der Bemessung notwendig und die standortspezifischen Schalenstärken können übernommen werden.
- «Erweiterte Analogie» die Nutzungsdauer des im Berechnungsmodell enthaltenen und des betrachteten Bauwerks stimmt nicht überein. Aus diesem Grund muss die Bemessung (siehe Kap. 3 und 4) neu durchgeführt werden und die dazu notwendigen Schnittgrössen für die neue Nutzungsdauer müssen in den Berechnungsmodellen bestimmt werden. Die zugehörigen M/N-Interaktionsdiagramme sind in den Anhängen E, H und K zu finden.

Da der Zeitpunkt des Einbaus der Verkleidung unabhängig von der Nutzungsdauer ist, kann der Wert für den Mehrausbruch unabhängig von der Vorgehensweise direkt auf analoge Querschnitte übertragen werden.

In Tab. B-1 ist das Vorgehen bei der Bemessung für jedes Normalprofil einzeln dokumentiert.

7 Nachweis HAA-Lagerstollen für Rückholung

Für die Bemessung des Lagerstollens im Rückholungszeitraum muss die abgegebene thermische Belastung der Einlagerungsbehälter berücksichtigt werden. Dazu wird auf Basis von vereinfachten Annahmen die Spannung im Ausbau ermittelt, die sich aus der thermischen Belastung ergibt. Im Folgenden werden zunächst das Modell beschrieben und dann die standortspezifischen Parameter und Berechnungsergebnisse gezeigt.

Analytisches Modell

Es wird angenommen, dass der Tübbingausbau im Gebirge elastisch gebettet ist und sich durch die Temperaturerhöhung eine im Querschnitt des Trägers konstante Temperatur einstellt. Die Werte für die Ausgangsgebirgstemperatur entsprechen den Referenzwerten aus den ingenieurgeologischen Berichten (Nagra 2023a, Nagra 2023b, Nagra 2023c). Werte für die Temperatur am Übergang zwischen Bentonit und Tübbing nach 75 Jahren, welche für den ganzen Querschnitt des Trägers angenommen werden, basieren auf Berechnungen, die nach den Modellierungen gemäss Papafotiou et al. (2016) durchgeführt wurden. Die Spannung σ_C , die sich im Tübbing aus der thermischen Belastung ergibt, wird durch die folgende Formel berechnet:

$$\sigma_{C} = (\epsilon_{t,Temp} - \epsilon_{t,Geb}) E_{C} \tag{1}$$

$$\epsilon_{t,Temp} = \alpha \Delta T \tag{2}$$

$$\epsilon_{t,Geb} = \frac{1 + \nu_G}{E_G} \sigma_r \tag{3}$$

Aus (1), (2) und (3) ergibt sich:

$$\frac{\Delta\sigma_C}{E_C} = \left(\alpha\Delta T - \frac{1+\nu_G}{E_G}\sigma_r\right) \tag{4}$$

$$\frac{\Delta\sigma_C}{E_C} = \alpha \Delta T - \frac{1 + \nu_G}{E_G} \frac{\Delta\sigma_C d}{a}$$
(5)

$$\Delta \sigma_C = \frac{E_C \alpha \Delta T}{\left(1 + \frac{(1 + \nu_G) E_C d}{E_C a}\right)},\tag{6}$$

mit $\epsilon_{t,Temp}$ als tangentiale Temperaturdehnung, $\epsilon_{t,Geb}$ als Tangentialdehnung des Gebirges und σ_r als radiale Spannung. In Tab. 7-1 sind die Beschreibungen und die standortspezifischen Werte zu den weiteren Parametern zu finden. Für den E-Modul des Gebirges wird gemäss der Projektbasis Nagra (2023f) der Mittelwert der Werte parallel und senkrecht zur Schichtung und bei der Querdehnzahl der maximale Wert für die Querdehnung parallel zur Schichtung angesetzt.

Beschreibung	Parameter	Einheit	JO	NL	ZNO
E-Modul des Betons	E _C	GPa	40	40	40
Wärmeausdehnungskoeffizient des Betons	α	1/°K	0.0001	0.0001	0.0001
Temperaturgradient zwischen Tübbinginnenseite und Gebirge	$T_i - T_G = \Delta T$	°K	87 – 35 = 55	100 - 48 = 52	95 - 40 = 55
Mittlerer E-Modul des Gebirges	E_{G}	GPa	7.06	9.16	8.30
Querdehnzahl des Gebirges	ν_G	-	0.15	0.15	0.15
Dicke des Tübbings	d	m	0.25	0.40	0.35
Ausbruchradius	а	m	1.8	1.8	1.8

Tab. 7-1:Parameter und standortspezifische Werte f
ür die Berechnung der aus der Tempera-
turbelastung resultierenden Spannung im Beton

Mit der Formel (6) und den standortspezifischen Werten ergeben sich die in Tab. 7-2 gezeigten Werte für die aus der Temperaturbelastung resultierende zusätzliche Spannung im Beton.

Tab. 7-2:Standortspezifische Werte f
ür die aus der Temperaturbelastung resultierende zus
ätz-
liche Beanspruchung des T
übbings

Beschreibung	Parameter	Einheit	JO	NL	ZNO
Zusätzliche Betonspannung aus Temperaturbelastung	$\Delta \sigma_B$	MPa	11.0	10.0	11.0

Nachweis der Tragsicherheit

Die Nachweise für Biegung und Normalkraft im Grenzzustand der Tragsicherheit der Ausbruchsicherung und des Ausbaus werden nach einer Konsolidationszeit von 75 Jahren entsprechend dem Vorgehen aus Kapitel 4.2.2 geführt. Zusätzlich wird die standortspezifische Normalspannung im Tübbing infolge thermischer Belastung gemäss Tab. 7-2 berücksichtigt. Die thermischen Spannungen werden zu den Normalspannungen aus der Beanspruchung durch den Gebirgsdruck addiert. Mögliche Biegemomente aus der thermischen Belastung werden vernachlässigt.

Nachweis der Tragsicherheit des Ausbaus

Im Unterschied zur Vorgehensweise aus Kapitel 4.2.2 werden für den Nachweis die charakteristischen Schnittkräfte aus der numerischen Berechnung mit einem Sicherheitsfaktor von $\gamma = 1.0$ multipliziert. Der Widerstandsbeiwert für Beton wird zu $\gamma_c = 1.0$ gewählt. In Tab. 7-2 sind die massgebenden Ergebnisse aufgelistet. Details können Anhang C, Anhang F und Anhang I entnommen werden.

Stand- ort	Ort, Zeitpunkt	Stärke [cm]	N _{rd} [kN]	N _{tem} [kN]	N _{ed} [kN]	M _{ed} [kN/m]	eff(N	M,N)
JO	Schnitt 2, 75 Jahre	25	-4'426.0	-3'500	-7'176.0	-28.9	0.95	Erfüllt
NL	Schnitt 2, 75 Jahre	40	-8'128.8	-4'000	-12'128.8	-49.8	0.95	Erfüllt
ZNO	Schnitt 2, 75 Jahre	35	-6'609.2	-4'025	-10'459.2	-53.6	0.98	Erfüllt

Tab. 7-3: Nachweis für Biegung und Normalkraft (Tübbingausbau, C60/75)

Nachweis der Tragsicherheit der Längsfuge am Tübbing

Im Unterschied zur Vorgehensweise aus Kapitel 4.2.2 werden für den Nachweis die charakteristischen Schnittkräfte aus der numerischen Berechnung mit einem Sicherheitsfaktor von $\gamma = 1.0$ multipliziert. Der Widerstandsbeiwert für Beton wird zu $\gamma_c = 1.0$ gewählt. In Tab. 7-4 sind die massgebenden Ergebnisse aufgelistet. Details können Anhang C, Anhang F und Anhang I entnommen werden.

Tab. 7-4: Ergebnisse Fugennachweis für Biegung und Normalkraft (Tübbingausbau, C60/75)

Stand- ort	Ort, Zeitpunkt	Stärke [cm]	N _{rd} [kN]	N _{tem} [kN]	N _{ed} [kN]	M _{ed} [kN/m]	eff(N	M,N)
JO	Nachweis in der Fuge, 75 Jahre	25 ¹	-4'426.0	-3'500	-7'176.0	-28.9	0.901	Erfüllt
NL	Nachweis in der Fuge, 75 Jahre	40 ¹	-8'128.8	-4'000	-12'128.8	-49.8	0.776	Erfüllt
ZNO	Nachweis in der Fuge, 75 Jahre	351	-6'609.2	-4'025	-10'459.2	-53.6	0.795	Erfüllt

¹ Die Nachweisführung erfolgt mit einem angenommenen Randabstand von 5 cm (hohlraum- und bergseitig), vgl. Anhang A.

8 Zusammenfassung

In diesem Kapitel werden die Ergebnisse der Tragsicherheitsnachweise für die Bauwerke, die in den Berechnungsmodellen enthalten sind, zusammengefasst.

In Tab. 8-1 sind eine standortspezifische Übersicht der gewählten Bauteilstärken und der Betonqualität und in Tab. 8-2 eine standortspezifische Übersicht des benötigten Überschnitts und Mehrausbruchs zusammengestellt. Die eingetragenen Werte entsprechen den Werten für die jeweilig nachzuweisende Nutzungsdauer der Bauwerke.

Die Ergebnisse der weiteren Bauwerke, die sich im Opalinuston befinden und mittels Analogieschlüssen bemessen wurden, sind im Anhang B zu finden.

Alle in der aktuellen Projektphase geführten Nachweise für die Bauwerke im Opalinuston sind erfüllt.

Bauwerk	JO Stärke [cm]	NL Stärke [cm]	ZNO Stärke [cm]	Festigkeit
Hauptlager HAA	25	40	35	C60/75
Umladebereich HAA	35	50	45	C30/37
Hauptlager SMA	40	40	40	C30/37
Übernahmebereich SMA	35	50	45	C30/37
Betriebstunnel HAA	35	50	45	C30/37
Betriebstunnel SMA	35	50	45	C30/37
Betriebsschacht	-	120	100	C30/37
Lüftungsschacht	40	80	65	C30/37

Tab. 8-1: Übersicht der standortspezifischen Bauteilstärke und Betonqualität

Tab. 8-2: Übersicht des standortspezifischen Überschnitts und Mehrausbruchs

Bauwerk	JO Mehrausbruch/ Überschnitt [cm]	NL Mehrausbruch/ Überschnitt [cm]	ZNO Mehrausbruch/ Überschnitt [cm]
Hauptlager HAA	5.0	5.0	5.0
Umladebereich HAA	5.0	15.0	10.0
Hauptlager SMA	10.0	20.0	15.0
Übernahmebereich SMA	5.0	10.0	10.0
Betriebstunnel HAA	5.0	15.0	10.0
Betriebstunnel SMA	5.0	10.0	10.0
Betriebsschacht	-	5.0	5.0
Lüftungsschacht	5.0	5.0	5.0

9 Literaturverzeichnis

Itasca Consultants: Fast Lagrangian Analysis of Continua (FLAC) 3D. 7.0, Release 148, online verfügbar unter

https://docs.itascacg.com/flac3d700/flac3d/docproject/source/flac3dhome.html, Stand am 08. Februar 2023.

- Nagra (2023a): Bautechnisches Dossier Band 2: Bautechnisch relevante Auszüge geologischer Grundlagen Jura Ost. Nagra Arbeitsbericht NAB 23-01 Band 2.
- Nagra (2023b): Bautechnisches Dossier Band 3: Bautechnisch relevante Auszüge geologischer Grundlagen Nördlich Lägern. Nagra Arbeitsbericht NAB 23-01 Band 3.
- Nagra (2023c): Bautechnisches Dossier Band 4: Bautechnisch relevante Auszüge geologischer Grundlagen Zürich Nordost. Nagra Arbeitsbericht NAB 23-01 Band 4.
- Nagra (2023d): Bautechnisches Dossier Band 5: Nutzungsvereinbarung. Nagra Arbeitsbericht NAB 23-01 Band 5.
- Nagra (2023e): Bautechnisches Dossier Band 6: Technischer Beschrieb und Pläne Lagerprojekte. Nagra Arbeitsbericht NAB 23-01 Band 6.
- Nagra (2023f): Bautechnisches Dossier Band 7: Projektbasis. Nagra Arbeitsbericht NAB 23-01 Band 7.
- Papafotiou, A., Namhata, A., Singh, A., Williams, M., Jigmond, M. & Marschall, P. (2016): Parametric sensitivity analysis of heat and gas release for a geological repository for SF/HLW in Northern Switzerland. Nagra Arbeitsbericht NAB 17-05.
- SIA (2013): Betonbau. Schweizer Norm SIA 262, SN 505 262. Schweizerischer Ingenieur- und Architekten-Verein, Zürich.

Inhaltsverzeichnis

Anhang A	Längsfugennachweis für den HAA-Lagerstollen	A-1
Anhang B	Dokumentation des Vorgehens und der Ergebnisse der Analogieüberlegungen	B- 1
Anhang C	Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort JO	C-1
C.1	Definition der Schnittebenen im Modell	C-1
C.2	Schnitt A	C-2
C.2.1	Spannungsverläufe	C-2
C.2.2	Verformungen	C-5
C.2.3	Schnittgrössen	C-7
C.2.4	Nachweise	C-12
C.3	Schnitt B	C-14
C.3.1	Verformungen	C-14
C.4	Schnitt C	C-16
C.4.1	Spannungsverläufe	C-16
C.4.2	Verformungen	C-18
C.4.3	Schnittgrössen	C-20
C.4.4	Nachweise	C-25
C.5	Schnitt D	C-27
C.5.1	Spannungsverläufe	C-27
C.5.2	Verformungen	C-29
C.5.3	Schnittgrössen	C-31
C.5.4	Nachweise	C-38
Anhang D	Dokumentation der numerischen Ergebnisse des Berechnungsmodells	D 1
D 1	Definition der Schnittehenen im Medell	D 1 חיייי
D.1	Definition der Schnittebenen im Woden	D-1
D.2	Schnitt A	D-I
D.2.1	Spannungsverlaule	D-1
D.2.2	Vertormungen	D 6
D.2.3	Nachweise	D-0 ח-0
D.2.4	Schnitt B	D-13
D 3 1	Verformungen	D-13
D.3.1	Schnitt (D_15
D.4.1	Spannungsverläufe	D-15
D.4.2	Verformungen	D-17
D.4.3	Schnittgrössen	D- 19
D.4.4	Nachweise	D-24

D.5	Schnitt D	D-26
D.5.1	Spannungsverläufe	D-26
D.5.2	Verformungen	D-28
D.5.3	Schnittgrössen	D-30
D.5.4	Nachweise	D-35
Anhang E	Dokumentation der numerischen Ergebnisse der «erweiterten Anal- für den Standort JO	ogie» E-1
E.1	Definition der Schnittebenen im Modell	E-1
E.1.1	Kontinuumsmodell HAA	E-1
E.1.2	Kontinuumsmodell SMA	E-2
E.2	Nachweis auf Basis des Kontinuumsmodells HAA	E-3
E.2.1	Schnitt A: Betriebstunnel, 100 Jahre	E-3
E.2.2	Schnitt 1: Umladebereich, 50 Jahre	E-4
E.2.3	Schnitt 1: Umladebereich, 100 Jahre	E-5
E.3	Nachweis auf Basis des Kontinuumsmodells SMA	E-6
E.3.1	Schnitt A: Betriebstunnel, 100 Jahre	E-6
E.3.2	Schnitt 3: Übernahmebereich, 25 Jahre	E-7
E.3.3	Schnitt 3: Übernahmebereich, 50 Jahre	E-8
E.3.4	Schnitt 3: Übernahmebereich, 100 Jahre	E-9
Anhang F	Dokumentation der numerischen Ergebnisse des Berechnungsmode	lls
Anhang F	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL	lls F-1
Anhang F F.1	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell	lls F-1 F-1
Anhang F F.1 F.2	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A	lls F-1 F-1 F-2
Anhang F F.1 F.2 F.2.1	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe	lls F-1 F-1 F-2 F-2
Anhang F F.1 F.2 F.2.1 F.2.2	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen	lls F-1 F-2 F-2 F-2 F-5
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.2 F.2.3	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnittgrössen	lls F-1 F-1 F-2 F-2 F-5 F-7
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.2 F.2.3 F.2.4	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnittgrössen Nachweise	lls F-1 F-2 F-2 F-2 F-5 F-7 F-12
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.3 F.2.4 F.3	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnittgrössen Nachweise Schnitt B	lls F-1 F-2 F-2 F-5 F-5 F-7 F-12 F-14
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.2 F.2.3 F.2.4 F.3 F.3.1	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnittgrössen Nachweise Schnitt B Verformungen	lls F-1 F-2 F-2 F-2 F-5 F-5 F-7 F-12 F-14 F-14
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.3 F.2.4 F.3 F.3.1 F.4	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt B Verformungen	lls F-1 F-2 F-2 F-2 F-5 F-5 F-7 F-12 F-14 F-14 F-16
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnittgrössen Nachweise Schnitt B Verformungen Schnitt C Spannungsverläufe	lls F-1 F-2 F-2 F-2 F-5 F-7 F-12 F-14 F-14 F-16 F-16
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1 F.4.2	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe. Verformungen. Schnittgrössen. Nachweise. Schnitt B Verformungen. Schnitt C Spannungsverläufe. Verformungen.	lls F-1 F-2 F-2 F-2 F-5 F-5 F-7 F-12 F-14 F-14 F-16 F-16 F-18
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1 F.4.2 F.4.3	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt C Spannungsverläufe Schnitt C Spannungsverläufe	lls F-1 F-2 F-2 F-2 F-2 F-5 F-7 F-12 F-14 F-14 F-16 F-16 F-18 F-20
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1 F.4.2 F.4.3 F.4.3 F.4.4	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt C Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt C Spannungsverläufe Verformungen Schnitt C Spannungsverläufe Verformungen Schnitt C Spannungsverläufe Verformungen Schnittgrössen Nachweise	lls F-1 F-2 F-2 F-2 F-5 F-5 F-7 F-12 F-14 F-14 F-14 F-16 F-16 F-18 F-20 F-25
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1 F.4.2 F.4.3 F.4.3 F.4.4 F.5	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL. Definition der Schnittebenen im Modell	lls F-1 F-2 F-2 F-2 F-5 F-5 F-7 F-12 F-14 F-14 F-16 F-16 F-18 F-20 F-25 F-27
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1 F.4.2 F.4.3 F.4.3 F.4.4 F.5 F.5.1	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt C Spannungsverläufe Verformungen Schnitt D Schnitt D	lls F-1 F-2 F-2 F-2 F-2 F-5 F-7 F-12 F-14 F-14 F-14 F-16 F-16 F-18 F-20 F-27 F-27
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1 F.4.2 F.4.3 F.4.3 F.4.4 F.5 F.5.1 F.5.2	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt C Spannungsverläufe Verformungen Schnitt D Schnitt D Verformungen	lls F-1 F-2 F-2 F-2 F-5 F-5 F-7 F-12 F-14 F-14 F-16 F-16 F-16 F-20 F-25 F-27 F-27 F-29
Anhang F F.1 F.2 F.2.1 F.2.2 F.2.3 F.2.4 F.3 F.3.1 F.4 F.4.1 F.4.2 F.4.3 F.4.3 F.4.4 F.5 F.5.1 F.5.2 F.5.3	Dokumentation der numerischen Ergebnisse des Berechnungsmode HAA für den Standort NL Definition der Schnittebenen im Modell Schnitt A Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt C Spannungsverläufe Verformungen Schnitt B Verformungen Schnitt C Spannungsverläufe Verformungen Schnitt D Schnitt D Spannungsverläufe	lls F-1 F-2 F-2 F-2 F-5 F-7 F-12 F-14 F-14 F-14 F-16 F-16 F-16 F-20 F-27 F-27 F-27 F-29 F-31

Anhang G	Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort NL	G-1
G.1	Definition der Schnittebenen im Modell	G-1
G.2	Schnitt A	G-3
G.2.1	Spannungsverläufe	G-3
G.2.2	Verformungen	G-6
G.2.3	Schnittgrössen	G-8
G.2.4	Nachweise	G-13
G.3	Schnitt B	G-15
G.3.1	Verformungen	G-15
G.4	Schnitt C	G-17
G.4.1	Spannungsverläufe	G-17
G.4.2	Verformungen	G-19
G.4.3	Schnittgrössen	G-21
G.4.4	Nachweise	G-26
G.5	Schnitt D	G-28
G.5.1	Spannungsverläufe	G-28
G.5.2	Verformungen	G-30
G.5.3	Schnittgrössen	G-32
G.5.4	Nachweise	G-37
Anhang H	Dokumentation der numerischen Ergebnisse der «erweiterten Analogie»	>
	für den Standort NL	H-1
H.1	Definition der Schnittebenen im Modell	H-1
H.1.1	Kontinuumsmodell HAA	H-1
H.1.2	Kontinuumsmodell SMA	H-2
H.2	Nachweis auf Basis des Kontinuumsmodells HAA	H-3
H.2.1	Schnitt A: Betriebstunnel, 100 Jahre	H-3
H.2.2	Schnitt 1: Umladebereich, 50 Jahre	H-4
H.2.3	Schnitt 1: Umladebereich, 100 Jahre	H-5
H.3	Nachweis auf Basis des Kontinuumsmodells SMA	H-6
H.3.1	Schnitt A: Betriebstunnel, 100 Jahre	H-6
H.3.2	Schnitt 3: Übernahmebereich, 25 Jahre	H-7
H.3.3	Schnitt 3: Übernahmebereich, 50 Jahre	H-8
H.3.4	Schnitt 3: Ubernahmebereich, 100 Jahre	H-9
Anhang I	Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort ZNO	I-1
I.1	Definition der Schnittebenen im Modell	I-1
I.2	Schnitt A	I-2
I.2.1	Spannungsverläufe	I-2
I.2.2	Verformungen	I-5
I.2.3	Schnittgrössen	I-7
I.2.4	Nachweise	I-12
I.3	Schnitt B	I-14
I.3.1	Verformungen	I-14

I.4	Schnitt C	I-16
I.4.1	Spannungsverläufe	I-16
I.4.2	Verformungen	I-18
I.4.3	Schnittgrössen	I-20
I.4.4	Nachweise	I-25
I.5	Schnitt D	I-27
I.5.1	Spannungsverläufe	I-27
I.5.2	Verformungen	I-29
I.5.3	Schnittgrössen	I-31
I.5.4	Nachweise	I-38
I.5.4.1	Nachweise im Schnitt 2 – 4 Jahre	I-38
I.5.4.2	Nachweise im Schnitt 2 – 75 Jahre	I-40
Anhang J	Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort ZNO	J-1
J.1	Definition der Schnittebenen im Modell	J-1
J.2	Schnitt A	J-3
J.2.1	Spannungsverläufe	J-3
J.2.2	Verformungen	J-6
J.2.3	Schnittgrössen	J-8
J.2.4	Nachweise	J-13
J.3	Schnitt B	J-15
J.3.1	Verformungen	J-15
J.4	Schnitt C	J-17
J.4.1	Spannungsverläufe	J-17
J.4.2	Verformungen	J-19
J.4.3	Schnittgrössen	J-21
J.4.4	Nachweise	J-26
J.5	Schnitt D	J-28
J.5.1	Spannungsverläufe	J-28
J.5.2	Verformungen	J-30
J.5.3	Schnittgrössen	J-32
J.5.4	Nachweise	J-37
Anhang K	Dokumentation der numerischen Ergebnisse der «erweiterten Analogie für den Standort ZNO	» K-1
K.1	Definition der Schnittebenen im Modell	K-1
K.1.1	Kontinuumsmodell HAA	K-1
K.1.2	Kontinuumsmodell SMA	K-2
K.2	Nachweis auf Basis des Kontinuumsmodells HAA	K-3
K.2.1	Schnitt A: Betriebstunnel, 100 Jahre	K-3
K.2.2	Schnitt 1: Umladebereich, 50 Jahre	K-4
K.2.3	Schnitt 1: Umladebereich, 100 Jahre	K-5

K.3	Nachweis auf Basis des Kontinuumsmodells SMA	K-6
K.3.1	Schnitt A: Betriebstunnel, 100 Jahre	K-6
K.3.2	Schnitt 3: Übernahmebereich, 25 Jahre	K-7
K.3.3	Schnitt 3: Übernahmebereich, 50 Jahre	K-8
K.3.4	Schnitt 3: Übernahmebereich, 100 Jahre	K-9
Anhang L	Dokumentation der numerischen Ergebnisse des Lüftungsschachtes den Standort JO	für L-1
L.1	Definition der Schnittebenen im Modell	L-1
L.2	Lüftungsschacht	L-2
L.2.1	Spannungsverläufe	L-2
L.2.2	Verformungen	L-4
L.2.3	Schnittgrössen	L-6
L.2.4	Nachweise	L-11
Anhang M	Dokumentation der numerischen Ergebnisse des Betriebs- und Lüftungsschachtes für den Standort NL	M-1
M.1	Definition der Schnittebenen im Modell	M-1
M.2	Betriebsschacht	M-2
M.2.1	Spannungsverläufe	M-2
M.2.2	Verformungen	M-4
M.2.3	Schnittgrössen	M-6
M.2.4	Nachweise	M-11
M.3	Lüftungsschacht	M-13
M.3.1	Spannungsverläufe	M-13
M.3.2	Verformungen	M-15
M.3.3	Schnittgrössen	M-17
M.3.4	Nachweise	M-22
Anhang N	Dokumentation der numerischen Ergebnisse des Betriebs- und Lüftungsschachtes für den Standort ZNO	N-1
N.1	Definition der Schnittebenen im Modell	N-1
N.2	Betriebsschacht	N-2
N.2.1	Spannungsverläufe	N-2
N.2.2	Verformungen	N-4
N.2.3	Schnittgrössen	N-6
N.2.4	Nachweise	N-11
N.3	Lüftungsschacht ZNO	N-13
N.3.1	Spannungsverläufe	N-13
N.3.2	Verformungen	N-15
N.3.3	Schnittgrössen	N-17
N.3.4	Nachweise	N-22

Tabellenverzeichnis

Tab. B-1:	Bemessung der weiteren Bauwerke mittels Analogieschlüssen	B-1
Tab. B-2:	Bemessung der weiteren Bauwerke mittels Analogieschlüssen	B-3
Tab. B-3:	Bemessung der weiteren Bauwerke mittels Analogieschlüssen	B-5
Tab. C-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	C-12
Tab. C-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1	C-25
Tab. C-3:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2	C-37
Tab. D-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	D- 11
Tab. D-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1	D-24
Tab. D-3:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2	D-35
Tab. F-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	F-12
Tab. F-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1	F-25
Tab. F-3:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2	F-37
Tab. G-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	G-13
Tab. G-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1	G-26
Tab. G-3:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2	G-37
Tab. I-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	I-12
Tab. I-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1	I-25
Tab. I-3:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2	I-37
Tab. J-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	J-13
Tab. J-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1	J-26
Tab. J-3:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2	J-37
Tab. L-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	L-10
Tab. M-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	M-10
Tab. M-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	M-21
Tab. N-1:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	N-10
Tab. N-2:	Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A	N-21

Figurenverzeichnis

Fig. A-1:	Geometrie der Längsfuge – Tübbing. Randabstand: 5 cm	1
Fig. C-1	Definition der Schnittebenen HAA	1
Fig. C-2	Porenwasserdruck entlang der Abfragelinie Parament	2
Fig. C-3	Porenwasserdruck entlang der Abfragelinie Firste	2
Fig. C-4	Spannung (σ'xx) entlang der Abfragelinie Parament	2
Fig. C-5	Spannung (σ'xx) entlang der Abfragelinie Firste	3
Fig. C-6	Spannung (σ 'yy) entlang der Abfragelinie Parament C-2	3
Fig. C-7	Spannung (σ 'yy) entlang der Abfragelinie Firste C-2	3
Fig. C-8	Spannung (σ 'zz) entlang der Abfragelinie Parament C-4	4
Fig. C-9	Spannung (σ 'zz) entlang der Abfragelinie Firste C-4	4
Fig. C-10	Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit C-	5
Fig. C-11	Verformungen des Querschnitts A, Kurzzeit	5
Fig. C-12	Verformungen des Querschnitts A, 40 Jahre C-6	5
Fig. C-13	Verformungen des Querschnitts A, 100 Jahre C-6	5
Fig. C-14	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau C-7	7
Fig. C-15	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit C-7	7
Fig. C-16	Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre C-8	8
Fig. C-17	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre C-8	8
Fig. C-18	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 40 Jahre C-9	9
Fig. C-19	Biegemoment (Mx), Schnitt A, 40 Jahre C-9	9
Fig. C-20	Querkraft (Qy), Schnitt A, 40 Jahre C-10	0
Fig. C-21	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre C-10	0
Fig. C-22	Biegemoment (Mx), Schnitt A, 100 Jahre C-1	1
Fig. C-23	Querkraft (Qy), Schnitt A, 100 Jahre C-11	1
Fig. C-24	Tragsicherheitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 35 cm	2
Fig. C-25	Gebrauchstauglichkeitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 35 cm	3
Fig. C-26	Verformung, Schnitt B, D=10.8 m, Kurzzeit	4
Fig. C-27	Verformung, Schnitt B, D=10.8 m, 40 Jahre	4
Fig. C-28	Verformung, Schnitt B, D=10.8 m, 100 Jahre C-12	5
Fig. C-29	Porenwasserdruck entlang der Abfragelinie Parament C-16	6
Fig. C-30	Spannung (σ'xx) entlang der Abfragelinie Parament	6
Fig. C-31	Spannung (σ 'yy) entlang der Abfragelinie Parament C-10	6

Fig. C-32	Spannung (o'zz) entlang der Abfragelinie Parament	C-17
Fig. C-33	Verformungen des Querschnitts, Schnitt 1, Kurzzeit	C-18
Fig. C-34	Verformungen des Querschnitts, Schnitt 1, 40 Jahre	C-18
Fig. C-35	Verformungen des Querschnitts, Schnitt 1, 100 Jahre	C-19
Fig. C-36	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	C-20
Fig. C-37	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	C-20
Fig. C-38	Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre	C-21
Fig. C-39	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	C-21
Fig. C-40	Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 40 Jahre	C-22
Fig. C-41	Biegemoment (Mx), Schnitt 1, 40 Jahre	C-22
Fig. C-42	Querkraft (Qy), Schnitt 1, 40 Jahre	C-23
Fig. C-43	Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 100 Jahre	C-23
Fig. C-44	Biegemoment (Mx), Schnitt 1, 100 Jahre	C-24
Fig. C-45	Querkraft (Qy), Schnitt 1, 100 Jahre	C-24
Fig. C-46	Tragsicherheitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 35 cm	C-25
Fig. C-47	Gebrauchstauglichkeitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 35 cm	C-26
Fig. C-48	Porenwasserdruck entlang der Abfragelinie Parament	C-27
Fig. C-49	Spannung (σ'xx) entlang der Abfragelinie Parament	C-27
Fig. C-50	Spannung (σ'yy) entlang der Abfragelinie Parament	C-27
Fig. C-51	Spannung (σ'zz) entlang der Abfragelinie Parament	C-28
Fig. C-52	Radialverschiebung vs. Ortsbrustposition, Lagerstollen, Schnitt 2	C-29
Fig. C-53	Verformungen des Querschnitts, Schnitt 2, Kurzzeit	C-29
Fig. C-54	Verformungen des Querschnitts, Schnitt 2, 4 Jahre	C-30
Fig. C-55	Verformungen des Querschnitts, Schnitt 2, 100 Jahre	C-30
Fig. C-56	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	C-31
Fig. C-57	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	C-31
Fig. C-58	Normalkraft Ny (MN/m) in Umfangsrichtung, 4 Jahre	C-32
Fig. C-59	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	C-32
Fig. C-60	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, Kurzzeit	C-33
Fig. C-61	Biegemoment (Mx), Schnitt 2, Kurzzeit	C-33
Fig. C-62	Querkraft (Qy), Schnitt 2, Kurzzeit	C-34
Fig. C-63	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 4 Jahre	C-34
Fig. C-64	Biegemoment (Mx), Schnitt 2, 4 Jahre	C-35
Fig. C-65	Querkraft (Qy), Schnitt 2, 4 Jahre	C-35

Anhang-IX

Fig. C-66	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 100 Jahre	C-36
Fig. C-67	Biegemoment (Mx), Schnitt 2, 100 Jahre	C-36
Fig. C-68	Querkraft (Qy), Schnitt 2, 100 Jahre	C-37
Fig. C-69	Tragsicherheitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 25 cm	C-38
Fig. C-70	Gebrauchstauglichkeitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 25 cm	C-38
Fig. C-71	Längsfugennachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 25 cm	C-39
Fig. C-72	Tragsicherheitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 25 cm	C-40
Fig. C-73	Gebrauchstauglichkeitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 25 cm	C-40
Fig. C-74	Längsfugennachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 25 cm.	C-41
Fig. D-1:	Definition der Schnittebenen SMA	D- 1
Fig. D-2:	Porenwasserdruck entlang der Abfragelinie Parament	D- 1
Fig. D-3:	Porenwasserdruck entlang der Abfragelinie Firste	D-1
Fig. D-4:	Spannung (σ'xx) entlang der Abfragelinie Parament	D- 1
Fig. D-5:	Spannung (σ'xx) entlang der Abfragelinie Firste	D-2
Fig. D-6:	Spannung (σ'yy) entlang der Abfragelinie Parament	D-2
Fig. D-7:	Spannung (σ'yy) entlang der Abfragelinie Firste	D-2
Fig. D-8:	Spannung (σ'zz) entlang der Abfragelinie Parament	D-3
Fig. D-9:	Spannung (σ'zz) entlang der Abfragelinie Firste	D-3
Fig. D-10:	Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit	D-4
Fig. D-11:	Verformung des Querschnitts A, Kurzzeit	D-4
Fig. D-12:	Verformung des Querschnitts A, 50 Jahre	D-5
Fig. D-13:	Verformung des Querschnitts A, 100 Jahre	D-5
Fig. D-14:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	D-6
Fig. D-15:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	D-6
Fig. D-16:	Normalkraft Ny (MN/m) in Umfangsrichtung, 50 Jahre	D-7
Fig. D-17:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	D-7
Fig. D-18:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 50 Jahre	D-8
Fig. D-19:	Biegemoment (Mx), Schnitt A, 50 Jahre	D-8
Fig. D-20:	Querkraft (Qy), Schnitt A, 50 Jahre	D-9
Fig. D-21:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre	D-9
Fig. D-22:	Biegemoment (Mx), Schnitt A, 100 Jahre	D-10
Fig. D-23:	Querkraft (Qy), Schnitt A, 100 Jahre	D-10

Anhang-X

Fig. D-24:	Tragsicherheitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 35 cm	D- 11
Fig. D-25:	Gebrauchstauglichkeitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 35 cm	D-12
Fig. D-26:	Verformung des Querschnitts B, D=12.3 m, Kurzzeit	D-13
Fig. D-27:	Verformung des Querschnitts B, D=12.3 m, 50 Jahre	D-13
Fig. D-28:	Verformung des Querschnitts B, D=12.3 m, 100 Jahre	D-14
Fig. D-29:	Porenwasserdruck entlang der Abfragelinie Parament	D-15
Fig. D-30:	Spannung (σ'xx) entlang der Abfragelinie Parament	D-15
Fig. D-31:	Spannung (σ'yy) entlang der Abfragelinie Parament	D-15
Fig. D-32:	Spannung (σ'zz) entlang der Abfragelinie Parament	D-16
Fig. D-33:	Radialverschiebung vs. Ortsbrustposition, Schnitt 1, Kurzzeit	D-17
Fig. D-34:	Verformung des Querschnitts 1, Kurzzeit	D-17
Fig. D-35:	Verformung des Querschnitts 1, 25 Jahre	D-18
Fig. D-36:	Verformung des Querschnitts 1, 100 Jahre	D-18
Fig. D-37:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	D-19
Fig. D-38:	Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit	D-19
Fig. D-39:	Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre	D-20
Fig. D-40:	Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre	D-20
Fig. D-41:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 25 Jahre	D-2 1
Fig. D-42:	Biegemoment (My), Schnitt 1, 25 Jahre	D-2 1
Fig. D-43:	Querkraft (Qx), Schnitt 1, 25 Jahre	D-22
Fig. D-44:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 100 Jahre	D-22
Fig. D-45:	Biegemoment (My), Schnitt 1, 100 Jahre	D-23
Fig. D-46:	Querkraft (Qx), Schnitt 1, 100 Jahre	D-23
Fig. D-47:	Tragsicherheitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 35 cm	D-24
Fig. D-48:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 35 cm	D-25
Fig. D-49:	Porenwasserdruck entlang der Abfragelinie Parament	D-26
Fig. D-50:	Spannung (σ'xx) entlang der Abfragelinie Parament	D-26
Fig. D-51:	Spannung (σ'yy) entlang der Abfragelinie Parament	D-27
Fig. D-52:	Spannung (σ'zz) entlang der Abfragelinie Parament	D-27
Fig. D-53:	Radialverschiebung vs. Ortsbrustposition, Schnitt 2, Kurzzeit	D-28
Fig. D-54:	Verformung des Querschnitts 2, Kurzzeit	D-28
Fig. D-55:	Verformung des Querschnitts 2, 25 Jahre	D-29

Fig. D-56:	Verformung des Querschnitts 2, 100 Jahre	. D-29
Fig. D-57:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	. D-30
Fig. D-58:	Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit	. D-30
Fig. D-59:	Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre	. D-31
Fig. D-60:	Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre	. D-31
Fig. D-61:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 25 Jahre	. D-32
Fig. D-62:	Biegemoment (My), Schnitt 2, 25 Jahre	. D-32
Fig. D-63:	Querkraft (Qx), Schnitt 2, 25 Jahre	. D-33
Fig. D-64:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 100 Jahre	. D-33
Fig. D-65:	Biegemoment (My), Schnitt 2, 100 Jahre	. D-34
Fig. D-66:	Querkraft (Qx), Schnitt 2, 100 Jahre	. D-34
Fig. D-67:	Tragsicherheitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm	. D-35
Fig. D-68:	Gebrauchstauglichkeitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm	. D-36
Fig. E-1:	Definition der Schnittebenen HAA	E-1
Fig. E-2:	Definition der Schnittebenen SMA	E-2
Fig. E-3:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm	E-3
Fig. E-4:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm	E-3
Fig. E-5:	Tragsicherheitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 35 cm	E-4
Fig. E-6:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 35 cm	E-4
Fig. E-7:	Tragsicherheitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 40 cm	E-5
Fig. E-8:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 40 cm	E-5
Fig. E-9:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm	E-6
Fig. E-10:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm	E-6
Fig. E-11:	Tragsicherheitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 35 cm	E-7
Fig. E-12:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 35 cm	E-7
Fig. E-13:	Tragsicherheitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 35 cm	E-8

Fig. E-14:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 35 cm	E-8
Fig. E-15:	Tragsicherheitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 40 cm	E-9
Fig. E-16:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 40 cm	E-9
Fig. F-1:	Definition der Schnittebenen HAA	F-1
Fig. F-2:	Porenwasserdruck entlang der Abfragelinie Parament	F-2
Fig. F-3:	Porenwasserdruck entlang der Abfragelinie Firste	F-2
Fig. F-4:	Spannung (o'xx) entlang der Abfragelinie Parament	F-3
Fig. F-5:	Spannung (\sigma'xx) entlang der Abfragelinie Firste	F-3
Fig. F-6:	Spannung (o'yy) entlang der Abfragelinie Parament	F-3
Fig. F-7:	Spannung (o'yy) entlang der Abfragelinie Firste	F-4
Fig. F-8:	Spannung (o'zz) entlang der Abfragelinie Parament	F-4
Fig. F-9:	Spannung (o'zz) entlang der Abfragelinie Firste	F-4
Fig. F-10:	Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit	F-5
Fig. F-11:	Verformungen des Querschnitts A, Kurzzeit	F-5
Fig. F-12:	Verformungen des Querschnitts A, 40 Jahre	F-6
Fig. F-13:	Verformungen des Querschnitts A, 100 Jahre	F-6
Fig. F-14:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	F-7
Fig. F-15:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	F-7
Fig. F-16:	Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre	F-8
Fig. F-17:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	F-8
Fig. F-18:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 40 Jahre	F-9
Fig. F-19:	Biegemoment (Mx), Schnitt A, 40 Jahre	F-9
Fig. F-20:	Querkraft (Qy), Schnitt A, 40 Jahre	F-10
Fig. F-21:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre	F-10
Fig. F-22:	Biegemoment (Mx), Schnitt A, 100 Jahre	F-11
Fig. F-23:	Querkraft (Qy), Schnitt A, 100 Jahre	F-11
Fig. F-24:	Tragsicherheitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 50 cm	F-12
Fig. F-25:	Gebrauchstauglichkeitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 50 cm	F-13
Fig. F-26:	Verformung, Schnitt B, D=10.8 m, Kurzzeit	F-14
Fig. F-27:	Verformung, Schnitt B, D=10.8 m, 40 Jahre	F-14
Fig. F-28:	Verformung, Schnitt B, D=10.8 m, 100 Jahre	F-15
Fig. F-29:	Porenwasserdruck entlang der Abfragelinie Parament	F-16

Fig. F-30:	Spannung (σ 'xx) entlang der Abfragelinie Parament	F-16
Fig. F-31:	Spannung (σ'yy) entlang der Abfragelinie Parament	F-16
Fig. F-32:	Spannung (σ'zz) entlang der Abfragelinie Parament	F-17
Fig. F-33:	Verformungen des Querschnitts, Schnitt 1, Kurzzeit	F-18
Fig. F-34:	Verformungen des Querschnitts, Schnitt 1, 40 Jahre	F-18
Fig. F-35:	Verformungen des Querschnitts, Schnitt 1, 100 Jahre	F-19
Fig. F-36:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	F-20
Fig. F-37:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	F-20
Fig. F-38:	Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre	F-21
Fig. F-39:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	F-21
Fig. F-40:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 40 Jahre	F-22
Fig. F-41:	Biegemoment (Mx), Schnitt 1, 40 Jahre	F-22
Fig. F-42:	Querkraft (Qy), Schnitt 1, 40 Jahre	F-23
Fig. F-43:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 100 Jahre	F-23
Fig. F-44:	Biegemoment (Mx), Schnitt 1, 100 Jahre	F-24
Fig. F-45:	Querkraft (Qy), Schnitt 1, 100 Jahre	F-24
Fig. F-46:	Tragsicherheitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 50 cm	F-25
Fig. F-47:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 50 cm	F-26
Fig. F-48:	Porenwasserdruck entlang der Abfragelinie Parament	F-27
Fig. F-49:	Spannung (σ'xx) entlang der Abfragelinie Parament	F-27
Fig. F-50:	Spannung (σ'yy) entlang der Abfragelinie Parament	F-27
Fig. F-51:	Spannung (σ'zz) entlang der Abfragelinie Parament	F-28
Fig. F-52:	Radialverschiebung vs. Ortsbrustposition, Lagerstollen, Schnitt 2	F-29
Fig. F-53:	Verformungen des Querschnitts, Schnitt 2, Kurzzeit	F-29
Fig. F-54:	Verformungen des Querschnitts, Schnitt 2, 4 Jahre	F-30
Fig. F-55:	Verformungen des Querschnitts, Schnitt 2, 100 Jahre	F-30
Fig. F-56:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	F - 31
Fig. F-57:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	F - 31
Fig. F-58:	Normalkraft Ny (MN/m) in Umfangsrichtung, 4 Jahre	F-32
Fig. F-59:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	F-32
Fig. F-60:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, Kurzzeit	F-33
Fig. F-61:	Biegemoment (Mx), Schnitt 2, Kurzzeit	F-33
Fig. F-62:	Querkraft (Qy), Schnitt 2, Kurzzeit	F-34
Fig. F-63:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 4 Jahre	F-34

Fig. F-64:	Biegemoment (Mx), Schnitt 2, 4 Jahre	F-35
Fig. F-65:	Querkraft (Qy), Schnitt 2, 4 Jahre	F-35
Fig. F-66:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 100 Jahre	F-36
Fig. F-67:	Biegemoment (Mx), Schnitt 2, 100 Jahre	F-36
Fig. F-68:	Querkraft (Qy), Schnitt 2, 100 Jahre	F-37
Fig. F-69:	Tragsicherheitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 40 cm	F-38
Fig. F-70:	Gebrauchstauglichkeitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 40 cm	F-38
Fig. F-71:	Längsfugennachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 40 cm	F-39
Fig. F-72:	Tragsicherheitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 40 cm	F-40
Fig. F-73:	Gebrauchstauglichkeitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 40 cm.	F-40
Fig. F-74:	Längsfugennachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 40 cm	n F - 41
Fig. G-1:	Definition der Schnittebenen SMA	G-1
Fig. G-2:	Porenwasserdruck entlang der Abfragelinie Parament	G-3
Fig. G-3:	Porenwasserdruck entlang der Abfragelinie Firste	G-3
Fig. G-4:	Spannung (o'xx) entlang der Abfragelinie Parament	G-3
Fig. G-5:	Spannung (o'xx) entlang der Abfragelinie Firste	G-4
Fig. G-6:	Spannung (o'yy) entlang der Abfragelinie Parament	G-4
Fig. G-7:	Spannung (o'yy) entlang der Abfragelinie Firste	G-4
Fig. G-8:	Spannung (o'zz) entlang der Abfragelinie Parament	G-5
Fig. G-9:	Spannung (o'zz) entlang der Abfragelinie Firste	G-5
Fig. G-10:	Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit	G-6
Fig. G-11:	Verformungen des Querschnitts A, Kurzzeit	G-6
Fig. G-12:	Verformungen des Querschnitts A, 50 Jahre	G-7
Fig. G-13:	Verformungen des Querschnitts A, 100 Jahre	G-7
Fig. G-14:	Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau	G-8
Fig. G-15:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	G-8
Fig. G-16:	Normalkraft Ny (MN/m) in Umfangsrichtung, 50 Jahre	G-9
Fig. G-17:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	G-9
Fig. G-18:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 50 Jahre	G-10
Fig. G-19:	Biegemoment (Mx), Schnitt A, 50 Jahre	G-10
Fig. G-20:	Querkraft (Qy), Schnitt A, 50 Jahre	G - 11
Fig. G-21:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre	G-11
Fig. G-22:	Biegemoment (Mx), Schnitt A, 100 Jahre	G-12

Fig. G-23:	Querkraft (Qy), Schnitt A, 100 Jahre	G-12
Fig. G-24:	Tragsicherheitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 50 cm	G-13
Fig. G-25:	Gebrauchstauglichkeitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 50 cm	G-14
Fig. G-26:	Verformung, Schnitt B, D=12.3 m, Kurzzeit	G-15
Fig. G-27:	Verformung, Schnitt B, D=12.3 m, 50 Jahre	G-15
Fig. G-28:	Verformung, Schnitt B, D=12.3 m, 100 Jahre	G-16
Fig. G-29:	Porenwasserdruck entlang der Abfragelinie Parament	G-17
Fig. G-30:	Spannung (σ'xx) entlang der Abfragelinie Parament	G-17
Fig. G-31:	Spannung (σ'yy) entlang der Abfragelinie Parament	G-17
Fig. G-32:	Spannung (σ'zz) entlang der Abfragelinie Parament	G-18
Fig. G-33:	Radialverschiebung vs. Ortsbrustposition, Schnitt 1, Kurzzeit	G-19
Fig. G-34:	Verformung des Querschnitts 1, Kurzzeit	G-19
Fig. G-35:	Verformung des Querschnitts 1, 25 Jahre	G-20
Fig. G-36:	Verformung des Querschnitts 1, 100 Jahre	G-20
Fig. G-37:	Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau	G-2 1
Fig. G-38:	Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit	G-2 1
Fig. G-39:	Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre	G-22
Fig. G-40:	Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre	G-22
Fig. G-41:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 25 Jahre	G-23
Fig. G-42:	Biegemoment (My), Schnitt 1, 25 Jahre	G-23
Fig. G-43:	Querkraft (Qx), Schnitt 1, 25 Jahre	G-24
Fig. G-44:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 100 Jahre	G-24
Fig. G-45:	Biegemoment (My), Schnitt 1, 100 Jahre	G-25
Fig. G-46:	Querkraft (Qx), Schnitt 1, 100 Jahre	G-25
Fig. G-47:	Tragsicherheitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 50 cm	G-26
Fig. G-48:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 50 cm	G-27
Fig. G-49:	Porenwasserdruck entlang der Abfragelinie Parament	G-28
Fig. G-50:	Spannung (σ'xx) entlang der Abfragelinie Parament	G-28
Fig. G-51:	Spannung (σ'yy) entlang der Abfragelinie Parament	G-28
Fig. G-52:	Spannung (σ'zz) entlang der Abfragelinie Parament	G-29
Fig. G-53:	Radialverschiebung vs. Ortsbrustposition, Schnitt 2, Kurzzeit	G-30
Fig. G-54:	Verformung des Querschnitts 2, Kurzzeit	G-30
Fig. G-55:	Verformung des Querschnitts 2, 25 Jahre	. G-31
------------	---	--------
Fig. G-56:	Verformung des Querschnitts 2, 100 Jahre	. G-31
Fig. G-57:	Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau	. G-32
Fig. G-58:	Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit	. G-32
Fig. G-59:	Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre	. G-33
Fig. G-60:	Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre	. G-33
Fig. G-61:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 25 Jahre	. G-34
Fig. G-62:	Biegemoment (My), Schnitt 2, 25 Jahre	. G-34
Fig. G-63:	Querkraft (Qx), Schnitt 2, 25 Jahre	. G-35
Fig. G-64:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 100 Jahre	. G-35
Fig. G-65:	Biegemoment (My), Schnitt 2, 100 Jahre	. G-36
Fig. G-66:	Querkraft (Qx), Schnitt 2, 100 Jahre	. G-36
Fig. G-67:	Tragsicherheitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm	. G-37
Fig. G-68:	Gebrauchstauglichkeitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm	. G-38
Fig. H-1:	Definition der Schnittebenen HAA	H-1
Fig. H-2:	Definition der Schnittebenen SMA	H-2
Fig. H-3:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm	H-3
Fig. H-4:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm	H-3
Fig. H-5:	Tragsicherheitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 50 cm	H-4
Fig. H-6:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 50 cm.	H-4
Fig. H-7:	Tragsicherheitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 50 cm	H-5
Fig. H-8:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 50 cm	H-5
Fig. H-9:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm	H-6
Fig. H-10:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm	H-6
Fig. H-11:	Tragsicherheitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 50 cm	H-7
Fig. H-12:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 50 cm	H-7
Fig. H-13:	Tragsicherheitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 55 cm	H-8

Fig. H-14:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 55 cm.	H-8
Fig. H-15:	Tragsicherheitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 65 cm	H-9
Fig. H-16:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 65 cm	H-9
Fig. I-1:	Definition der Schnittebenen HAA	I-1
Fig. I-2:	Porenwasserdruck entlang der Abfragelinie Parament	I-2
Fig. I-3:	Porenwasserdruck entlang der Abfragelinie Firste	I-2
Fig. I-4:	Spannung (σ'xx) entlang der Abfragelinie Parament	I-3
Fig. I-5:	Spannung (σ'xx) entlang der Abfragelinie Firste	I-3
Fig. I-6:	Spannung (o'yy) entlang der Abfragelinie Parament	I-3
Fig. I-7:	Spannung (σ'yy) entlang der Abfragelinie Firste	I-4
Fig. I-8:	Spannung (σ'zz) entlang der Abfragelinie Parament	I-4
Fig. I-9:	Spannung (o'zz) entlang der Abfragelinie Firste	I-4
Fig. I-10:	Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit	I-5
Fig. I-11:	Verformungen des Querschnitts A, Kurzzeit	I-5
Fig. I-12:	Verformungen des Querschnitts A, 40 Jahre	I-6
Fig. I-13:	Verformungen des Querschnitts A, 100 Jahre	I-6
Fig. I-14:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	I-7
Fig. I-15:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	I-7
Fig. I-16:	Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre	I-8
Fig. I-17:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	I-8
Fig. I-18:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 40 Jahre	I-9
Fig. I-19:	Biegemoment (Mx), Schnitt A, 40 Jahre	I-9
Fig. I-20:	Querkraft (Qy), Schnitt A, 40 Jahre	I-10
Fig. I-21:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre	I-10
Fig. I-22:	Biegemoment (Mx), Schnitt A, 100 Jahre	I-11
Fig. I-23:	Querkraft (Qy), Schnitt A, 100 Jahre	I-11
Fig. I-24:	Tragsicherheitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 45 cm	I-12
Fig. I-25:	Gebrauchstauglichkeitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 45 cm	I-13
Fig. I-26:	Verformung, Schnitt B, D=10.8 m, Kurzzeit	I-14
Fig. I-27:	Verformung, Schnitt B, D=10.8 m, 40 Jahre	I-14
Fig. I-28:	Verformung, Schnitt B, D=10.8 m, 100 Jahre	I-15
Fig. I-29:	Porenwasserdruck entlang der Abfragelinie Parament	I-16

Fig. I-30:	Spannung (σ'xx) entlang der Abfragelinie Parament	I-16
Fig. I-31:	Spannung (σ'yy) entlang der Abfragelinie Parament	I-16
Fig. I-32:	Spannung (σ'zz) entlang der Abfragelinie Parament	I-17
Fig. I-33:	Verformungen des Querschnitts, Schnitt 1, Kurzzeit	I-18
Fig. I-34:	Verformungen des Querschnitts, Schnitt 1, 40 Jahre	I-18
Fig. I-35:	Verformungen des Querschnitts, Schnitt 1, 100 Jahre	I-19
Fig. I-36:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	I-20
Fig. I-37:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	I-20
Fig. I-38:	Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre	I-21
Fig. I-39:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	I-21
Fig. I-40:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 40 Jahre	I-22
Fig. I-41:	Biegemoment (Mx), Schnitt 1, 40 Jahre	I-22
Fig. I-42:	Querkraft (Qy), Schnitt 1, 40 Jahre	I-23
Fig. I-43:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 100 Jahre	I-23
Fig. I-44:	Biegemoment (Mx), Schnitt 1, 100 Jahre	I-24
Fig. I-45:	Querkraft (Qy), Schnitt 1, 100 Jahre	I-24
Fig. I-46:	Tragsicherheitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 45 cm	I-25
Fig. I-47:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 45 cm.	I-26
Fig. I-48:	Porenwasserdruck entlang der Abfragelinie Parament	I-27
Fig. I-49:	Spannung (σ'xx) entlang der Abfragelinie Parament	I-27
Fig. I-50:	Spannung (o'yy) entlang der Abfragelinie Parament	I-27
Fig. I-51:	Spannung (σ'zz) entlang der Abfragelinie Parament	I-28
Fig. I-52:	Radialverschiebung vs. Ortsbrustposition, Lagerstollen, Schnitt 2	I-29
Fig. I-53:	Verformungen des Querschnitts, Schnitt 2, Kurzzeit	I-29
Fig. I-54:	Verformungen des Querschnitts, Schnitt 2, 4 Jahre	I-30
Fig. I-55:	Verformungen des Querschnitts, Schnitt 2, 100 Jahre	I-30
Fig. I-56:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	I-31
Fig. I-57:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	I-31
Fig. I-58:	Normalkraft Ny (MN/m) in Umfangsrichtung, 4 Jahre	I-32
Fig. I-59:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	I-32
Fig. I-60:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, Kurzzeit	I-33
Fig. I-61:	Biegemoment (Mx), Schnitt 2, Kurzzeit	I-33
Fig. I-62:	Querkraft (Qy), Schnitt 2, Kurzzeit	I-34
Fig. I-63:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 4 Jahre	I-34

Fig. I-64:	Biegemoment (Mx), Schnitt 2, 4 Jahre	I-35
Fig. I-65:	Querkraft (Qy), Schnitt 2, 4 Jahre	I-35
Fig. I-66:	Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 100 Jahre	I-36
Fig. I-67:	Biegemoment (Mx), Schnitt 2, 100 Jahre	I-36
Fig. I-68:	Querkraft (Qy), Schnitt 2, 100 Jahre	I-37
Fig. I-69:	Tragsicherheitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 35 cm	I-38
Fig. I-70:	Gebrauchstauglichkeitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 35 cm	I-38
Fig. I-71:	Längsfugennachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 35 cm	I-39
Fig. I-72:	Tragsicherheitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 35 cm	I-40
Fig. I-73:	Gebrauchstauglichkeitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 35 cm	I-40
Fig. I-68:	Längsfugennachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 35 cm	I-41
Fig. J-1:	Definition der Schnittebenen SMA	J-1
Fig. J-2:	Porenwasserdruck entlang der Abfragelinie Parament	J-3
Fig. J-3:	Porenwasserdruck entlang der Abfragelinie Firste	J-3
Fig. J-4:	Spannung (σ'xx) entlang der Abfragelinie Parament	J-3
Fig. J-5:	Spannung (o'xx) entlang der Abfragelinie Firste	J-4
Fig. J-6:	Spannung (σ'yy) entlang der Abfragelinie Parament	J-4
Fig. J-7:	Spannung (σ'yy) entlang der Abfragelinie Firste	J-4
Fig. J-8:	Spannung (σ'zz) entlang der Abfragelinie Parament	J-5
Fig. J-9:	Spannung (σ 'zz) entlang der Abfragelinie Firste	J-5
Fig. J-10:	Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit	J-6
Fig. J-11:	Verformung des Querschnitts A, Kurzzeit	J-6
Fig. J-12:	Verformung des Querschnitts A, 50 Jahre	J-7
Fig. J-13:	Verformung des Querschnitts A, 100 Jahre	J-7
Fig. J-14:	Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau	J-8
Fig. J-15:	Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit	J-8
Fig. J-16:	Normalkraft Ny (MN/m) in Umfangsrichtung, 50 Jahre	J-9
Fig. J-17:	Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre	J-9
Fig. J-18:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 50 Jahre	J-10
Fig. J-19:	Biegemoment (Mx), Schnitt A, 50 Jahre	J-10
Fig. J-20:	Querkraft (Qy), Schnitt A, 50 Jahre	J-11
Fig. J-21:	Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre	J-11
Fig. J-22:	Biegemoment (Mx), Schnitt A, 100 Jahre	J-12

Fig. J-23:	Querkraft (Qy), Schnitt A, 100 Jahre	J-12
Fig. J-24:	Tragsicherheitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 45 cm	J-13
Fig. J-25:	Gebrauchstauglichkeitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 45 cm	J-14
Fig. J-26:	Verformung, Schnitt B, D=12.3 m, Kurzzeit	J-15
Fig. J-27:	Verformung, Schnitt B, D=12.3 m, 50 Jahre	J-15
Fig. J-28:	Verformung, Schnitt B, D=12.3 m, 100 Jahre	J-16
Fig. J-29:	Porenwasserdruck entlang der Abfragelinie Parament	J-17
Fig. J-30:	Spannung (σ'xx) entlang der Abfragelinie Parament	J-17
Fig. J-31:	Spannung (σ'yy) entlang der Abfragelinie Parament	J-17
Fig. J-32:	Spannung (σ'zz) entlang der Abfragelinie Parament	J-18
Fig. J-33:	Radialverschiebung vs. Ortsbrustposition, Schnitt 1, Kurzzeit	J-19
Fig. J-34:	Verformung des Querschnitts 1, Kurzzeit	J-19
Fig. J-35:	Verformung des Querschnitts 1, 25 Jahre	J-20
Fig. J-36:	Verformung des Querschnitts 1, 100 Jahre	J-20
Fig. J-37:	Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau	J-21
Fig. J-38:	Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit	J-21
Fig. J-39:	Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre	J-22
Fig. J-40:	Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre	J-22
Fig. J-41:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 25 Jahre	J-23
Fig. J-42:	Biegemoment (My), Schnitt 1, 25 Jahre	J-23
Fig. J-43:	Querkraft (Qx), Schnitt 1, 25 Jahre	J-24
Fig. J-44:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 100 Jahre	J-24
Fig. J-45:	Biegemoment (My), Schnitt 1, 100 Jahre	J-25
Fig. J-46:	Querkraft (Qx), Schnitt 1, 100 Jahre	J-25
Fig. J-47:	Tragsicherheitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 45 cm	J-26
Fig. J-48:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 45 cm	J-27
Fig. J-49:	Porenwasserdruck entlang der Abfragelinie Parament	J-28
Fig. J-50:	Spannung (o'xx) entlang der Abfragelinie Parament	J-28
Fig. J-51:	Spannung (o'yy) entlang der Abfragelinie Parament	J-28
Fig. J-52:	Spannung (σ'zz) entlang der Abfragelinie Parament	J-29
Fig. J-53:	Radialverschiebung vs. Ortsbrustposition, Schnitt 2, Kurzzeit	J-30
Fig. J-54:	Verformung des Querschnitts 2, Kurzzeit	J-30

Fig. J-55:	Verformung des Querschnitts 2, 25 Jahre	J-31
Fig. J-56:	Verformung des Querschnitts 2, 100 Jahre	J-31
Fig. J-57:	Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau	J-32
Fig. J-58:	Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit	J-32
Fig. J-59:	Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre	J-33
Fig. J-60:	Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre	J-33
Fig. J-61:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 25 Jahre	J-34
Fig. J-62:	Biegemoment (My), Schnitt 2, 25 Jahre	J-34
Fig. J-63:	Querkraft (Qx), Schnitt 2, 25 Jahre	J-35
Fig. J-64:	Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 100 Jahre	J-35
Fig. J-65:	Biegemoment (My), Schnitt 2, 100 Jahre	J-36
Fig. J-66:	Querkraft (Qx), Schnitt 2, 100 Jahre	J-36
Fig. J-67:	Tragsicherheitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm	J-37
Fig. J-68:	Gebrauchstauglichkeitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm	J-38
Fig. K-1:	Definition der Schnittebenen HAA	K- 1
Fig. K-2:	Definition der Schnittebenen SMA	K-2
Fig. K-3:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm	K-3
Fig. K-4:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm	K-3
Fig. K-5:	Tragsicherheitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 45 cm	K-4
Fig. K-6:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 45 cm	K-4
Fig. K-7:	Tragsicherheitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 45 cm	K-5
Fig. K-8:	Gebrauchstauglichkeitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 45 cm	K-5
Fig. K-9:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm	K-6
Fig. K-10:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm	K-6
Fig. K-11:	Tragsicherheitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 45 cm	K-7
Fig. K-12:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 45 cm	K-7
Fig. K-13:	Tragsicherheitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 50 cm	K-8

Fig. K-14:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 50 cm	K-8				
Fig. K-15:	Tragsicherheitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 55 cm					
Fig. K-16:	Gebrauchstauglichkeitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 55 cm.	K-9				
Fig. L-1:	Porenwasserdruck entlang der Abfragelinie	L-2				
Fig. L-2:	Spannung (o'xx) entlang der Abfragelinie	L-2				
Fig. L-3:	Spannung (o'yy) entlang der Abfragelinie	L-2				
Fig. L-4:	Spannung (o'zz) entlang der Abfragelinie	L-3				
Fig. L-5:	Verformungen am Schnitt A, Kurzzeit	L-4				
Fig. L-6:	Verformungen am Schnitt A, 50 Jahre	L-4				
Fig. L-7:	Verformungen am Schnitt A, 100 Jahre	L-5				
Fig. L-8:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit	L-6				
Fig. L-9:	Biegemoment (Mz), Schnitt A, Kurzzeit	L-6				
Fig. L-10:	Querkraft (Qy), Schnitt A, Kurzzeit	L-7				
Fig. L-11:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre	L-7				
Fig. L-12:	Biegemoment (Mz), Schnitt A, 50 Jahre	L-8				
Fig. L-13:	Querkraft (Qy), Schnitt A, 50 Jahre	L-8				
Fig. L-14:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre	L-9				
Fig. L-15:	Biegemoment (Mz), Schnitt A, 100 Jahre	L-9				
Fig. L-16:	Querkraft (Qy), Schnitt A, 100 Jahre	L-10				
Fig. L-17:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 40 cm	L-11				
Fig. L-18:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 40 cm	L-11				
Fig. M-1:	Porenwasserdruck entlang der Abfragelinie	M-2				
Fig. M-2:	Spannung (o'xx) entlang der Abfragelinie	M-2				
Fig. M-3:	Spannung (σ'yy) entlang der Abfragelinie	M-2				
Fig. M-4:	Spannung (o'zz) entlang der Abfragelinie	M-3				
Fig. M-5:	Verformungen am Schnitt A, Kurzzeit	M-4				
Fig. M-6:	Verformungen am Schnitt A, 50 Jahre	M-4				
Fig. M-7:	Verformungen am Schnitt A, 100 Jahre	M-5				
Fig. M-8:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit	M-6				
Fig. M-9:	Biegemoment (Mz), Schnitt A, Kurzzeit	M-6				
Fig. M-10:	Querkraft (Qy), Schnitt A, Kurzzeit	M-7				
Fig. M-11:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre	M-7				

Fig. M-12:	Biegemoment (Mz), Schnitt A, 50 Jahre	M-8
Fig. M-13:	Querkraft (Qy), Schnitt A, 50 Jahre	M-8
Fig. M-14:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre	M-9
Fig. M-15:	Biegemoment (Mz), Schnitt A, 100 Jahre	M-9
Fig. M-16:	Querkraft (Qy), Schnitt A, 100 Jahre	M-10
Fig. M-17:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 120 cm	M-11
Fig. M-18:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 120 cm	M-12
Fig. M-19:	Porenwasserdruck entlang der Abfragelinie	M-13
Fig. M-20:	Spannung (σ'xx) entlang der Abfragelinie	M-13
Fig. M-21:	Spannung (σ'yy) entlang der Abfragelinie	M-13
Fig. M-22:	Spannung (σ'zz) entlang der Abfragelinie	M-14
Fig. M-23:	Verformungen am Schnitt A, Kurzzeit	M-15
Fig. M-24:	Verformungen am Schnitt A, 50 Jahre	M-15
Fig. M-25:	Verformungen am Schnitt A, 100 Jahre	M-16
Fig. M-26:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit	M-17
Fig. M-27:	Biegemoment (Mz), Schnitt A, Kurzzeit	M-17
Fig. M-28:	Querkraft (Qy), Schnitt A, Kurzzeit	M-18
Fig. M-29:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre	M-18
Fig. M-30:	Biegemoment (Mz), Schnitt A, 50 Jahre	M-19
Fig. M-31:	Querkraft (Qy), Schnitt A, 50 Jahre	M-19
Fig. M-32:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre	M-20
Fig. M-33:	Biegemoment (Mz), Schnitt A, 100 Jahre	M-20
Fig. M-34:	Querkraft (Qy), Schnitt A, 100 Jahre	M-21
Fig. M-35:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 80 cm	M-22
Fig. M-36:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 80 cm.	M-22
Fig. N-1:	Porenwasserdruck entlang der Abfragelinie	N-2
Fig. N-2:	Spannung (o'xx) entlang der Abfragelinie	N-2
Fig. N-3:	Spannung (σ'yy) entlang der Abfragelinie	N-2
Fig. N-4:	Spannung (σ'zz) entlang der Abfragelinie	N-3
Fig. N-5:	Verformungen am Schnitt A, Kurzzeit	N-4
Fig. N-6:	Verformungen am Schnitt A, 50 Jahre	N-4
Fig. N-7:	Verformungen am Schnitt A, 100 Jahre	N-5
Fig. N-8:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit	N-6

Fig. N-9:	Biegemoment (Mz), Schnitt A, Kurzzeit	N-6
Fig. N-10:	Querkraft (Qy), Schnitt A, Kurzzeit	N-7
Fig. N-11:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre	N-7
Fig. N-12:	Biegemoment (Mz), Schnitt A, 50 Jahre	N-8
Fig. N-13:	Querkraft (Qy), Schnitt A, 50 Jahre	N-8
Fig. N-14:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre	N-9
Fig. N-15:	Biegemoment (Mz), Schnitt A, 100 Jahre	N-9
Fig. N-16:	Querkraft (Qy), Schnitt A, 100 Jahre	N-10
Fig. N-17:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 100 cm	N-11
Fig. N-18:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 100 cm	N-12
Fig. N-19:	Porenwasserdruck entlang der Abfragelinie	N-13
Fig. N-20:	Spannung (σ'xx) entlang der Abfragelinie	N-13
Fig. N-21:	Spannung (σ'yy) entlang der Abfragelinie	N-13
Fig. N-22:	Spannung (σ'zz) entlang der Abfragelinie	N-14
Fig. N-23:	Verformungen am Schnitt A, Kurzzeit	N-15
Fig. N-24:	Verformungen am Schnitt A, 50 Jahre	N-15
Fig. N-25:	Verformungen am Schnitt A, 100 Jahre	N-16
Fig. N-26:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit	N-17
Fig. N-27:	Biegemoment (Mz), Schnitt A, Kurzzeit	N-17
Fig. N-28:	Querkraft (Qy), Schnitt A, Kurzzeit	N-18
Fig. N-29:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre	N-18
Fig. N-30:	Biegemoment (Mz), Schnitt A, 50 Jahre	N-19
Fig. N-31:	Querkraft (Qy), Schnitt A, 50 Jahre	N-19
Fig. N-32:	Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre	N-20
Fig. N-33:	Biegemoment (Mz), Schnitt A, 100 Jahre	N-20
Fig. N-34:	Querkraft (Qy), Schnitt A, 100 Jahre	N-21
Fig. N-35:	Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 65 cm	N-22
Fig. N-36:	Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 65 cm	N-22

Anhang A Längsfugennachweis für den HAA-Lagerstollen

Im Folgenden ist das detaillierte Vorgehen bei dem Nachweis der Teilflächenpressung in der Längsfuge des Tübbings im Hauptlager HAA beschrieben.

Fig. A-1: Geometrie der Längsfuge – Tübbing. Randabstand: 5 cm

Der Nachweis ist erfüllt, wenn die im Bemessungsquerschnitt herrschende Kontaktspannung σ_d die maximal aufnehmbare Spannung σ_r des Tübbings nicht überschreitet. Es gilt:

$$\sigma_d = \frac{N_d}{A_{Fuge}}$$

mit

$$A_{Fuge} = B_{Fuge} * L_{Fuge}$$

Wie in Fig. A-1 dargestellt, ergibt sich die Breite der Fuge B_{Fuge} aus der Stärke des Tübbings $B_{Tübbing}$ abzüglich des entsprechenden Randabstands. Analog dazu ergibt sich die Länge der Fuge L_{Fuge} .

$$B_{Fuge} = B_{T\"ubbing} - R_{hohlraum} - R_{bergseitig}$$

$$L_{Fuge} = L_{T\"ubbing} - 2R_{hohlraum}$$

Der Nachweis wird pro Laufmeter geführt.

Die maximal aufnehmbare Spannung σ_r ergibt sich aus der Betondruckfestigkeit f_{cd} multipliziert mit einem Lasterhöhungsfaktor β zufolge mehraxialen Spannungszustands in der Kontaktfläche.

$$\sigma_r = f_{cd} * \beta \le 3.0 f_{cd}$$

$$\beta = \sqrt{\frac{A_c}{B_{Kontakt}L_{Fuge}}}$$

mit

$$A_c = L_{T\"ubbing} * (B_{Kontakt} + 2\bar{R})$$

$$B_{Kontakt} = B_{Fuge} - |2e_1|$$

Die Exzentrizität der Fugenkräfte e_1 berechnet sich aus dem Verhältnis von Fugenmoment M_{Fuge} und einwirkender Normalkraft N_d .

$$e_1 = \frac{M_{Fuge}}{N_d}$$

mit

$$M_{Fuge} = M_d - N_d(e_0 + d_{Versatz}/2)$$

Für den Nachweis wird die Exzentrizität der Fuge e_0 sowie der Versatz der Tübbinge $d_{Tübbing}$ vernachlässigt.

Der massgebende Randabstand \overline{R} ergibt sich zu

 $\bar{R} = min(R_{hohlraum}, R_{bergseitig})$

Für den Nachweis sind die gewählten Randabstände 5 cm. Der massgebende Randabstand \overline{R} beträgt 5 cm.

Anhang B Dokumentation des Vorgehens und der Ergebnisse der Analogieüberlegungen

In Tab. B-1 sind für alle Normalprofile die Vorgehen bei der Bemessung aufgelistet. Es wird zwischen «Berechnungsmodell», «erweiterte Analogie» und «direkter Analogie» unterschieden. Die Zuordnung der Normalprofile zu den Bauwerken ist in der Planmappe (Nagra 2023e)dokumentiert.

In Tab. B-2 sind eine standortspezifische Übersicht der gewählten Bauteilstärken und der Betonqualität und in Tab. B-2 eine standortspezifische Übersicht des benötigten Überschnitts und Mehrausbruchs zusammengestellt. Die eingetragenen Werte entsprechen den Werten für die jeweilig nachgewiesene Nutzungsdauer der Bauwerke.

Nr.	Bauwerk	NP	Spannweite [m]	Nutzungsdauer [a]	Modelliert	Nachweis/Begründung
1	Betriebsschacht, HB5	S90	9.50	100	Ja	Berechnungsmodell
2	Lüftungsschacht, HB5	S60 (S90)	6.00	100	Ja	Berechnungsmodell
3	Zentraler Bereich	Div.				
		D2x	6.04	100	Nein	Erweiterte Analogie des Betriebstunnels HAA
		R1x	7.88	100	Nein	Erweiterte Analogie des Umladebereichs HAA
		R1x	7.88	50	Nein	Erweiterte Analogie des Umladebereichs HAA
		T10	6.42	100	Nein	Erweiterte Analogie des Umladebereichs HAA
		U10	6.49	100	Nein	Erweiterte Analogie des Umladebereichs HAA
		Y10	4.20	100	Nein	Erweiterte Analogie des Betriebstunnels HAA
4	Demonstrations- bauwerk SMA	D20	6.04	25	Nein	Direkte Analogie des Betriebstunnels SMA
		M10 I10	7.30 9.80	25	Nein	Direkte Analogie des SMA Ablade- und Übernahmebereichs
		K90	11.57	25	Nein	Direkte Analogie des Hauptlagers SMA
5	Experimentbereiche	D10	5.50	100	Nein	Erweiterte Analogie des Betriebstunnels HAA
6	Demonstrationsbau- werk HAA	D20	6.04	40	Nein	Direkte Analogie des Betriebstunnels HAA
		E10	6.55	40	Nein	Direkte Analogie des Umladebereichs HAA
		F10	2.80	4	Nein	Direkte Analogie des Hauptlagers HAA

Tab. B-1: Bemessung der weiteren Bauwerke mittels Analogieschlüssen

Tab. B-1: Fortsetzung

Nr.	Bauwerk	NP	Spannweite [m]	Nutzungsdauer [a]	Modelliert	Nachweis/Begründung
8	Zugangsschacht, HB5	S30	8.50	50	Nein	Erweiterte Analogie des des Betriebsschachtes unter Berücksichtigung des kleineren Durchmessers (NL/ZNO)
9	Betriebstunnel SMA	D20	6.04	50	Ja	Berechnungsmodell
	Betriebstunnel SMA, bis Kontrollstollen	D20	6.04	100	Nein	Erweiterte Analogie des Betriebstunnels SMA
	Aufweitung Betriebstunnel SMA	W10	6.96	100	Nein	Erweiterte Analogie des Umladebereichs HAA
	Aufweitung Betriebstunnel SMA	W10	6.96	50	Nein	Erweiterte Analogie des Umladebereichs HAA
10	Lüftungstunnel SMA	D20	6.04	50	Nein	Direkte Analogie des Betriebstunnels SMA
11	Kontrollstollen SMA	D10	5.50	100	Nein	Erweiterte Analogie des Betriebstunnels SMA
12	Pilotlager SMA	K90	11.57	25	Nein	Direkte Analogie des Hauptlagers SMA
13	Hauptlager SMA	K90	11.57	25	Ja	Berechnungsmodell
15	Betriebstunnel HAA	D20	6.04	40	Ja	Berechnungsmodell
	Betriebstunnel HAA, bis Kontrollstollen	D20	6.04	100	Nein	Erweiterte Analogie des Betriebstunnels HAA
	Aufweitung Betriebstunnel HAA	W10	6.96	100	Nein	Erweiterte Analogie des Umladebereichs HAA
	Aufweitung Betriebstunnel HAA	W10	6.96	50	Nein	Erweiterte Analogie des Umladebereichs HAA
16	Lüftungstunnel HAA	D20	6.04	40	Nein	Direkte Analogie des Betriebstunnels HAA
17	Bautunnel HAA	D20	6.04	40	Nein	Direkte Analogie des Betriebstunnels HAA
18	Pilotlager HAA	F10	2.80	4	Nein	Direkte Analogie des Hauptlagers HAA
19	Kontrollstollen HAA	D10	5.50	100	Nein	Erweiterte Analogie des Betriebstunnels SMA
20	Hauptlager HAA	F10	2.80	4	Ja	Berechnungsmodell
21	Querverbindungstunnel HAA	D20	6.04	50/40	Nein	Direkte Analogie des Betriebstunnels HAA
22	Querverbindungstunnel SMA	D20	6.04	50/40	Nein	Direkte Analogie des Betriebstunnels SMA

Tab. B-1: Fortsetzung

Nr.	Bauwerk	NP	Spannweite [m]	Nutzungsdauer [a]	Modelliert	Nachweis/Begründung
23	(Pilot-)Lager- kavernenabzweiger, - abzweigertunnel, Ablade- und Übernahmebereich SMA					
	(Pilot-)Lager- kavernenabzweiger SMA	D20	6.04	50	Ja	Berechnungsmodell
	(Pilot-)Ablade- und Übernahmebereich SMA	M10 I10	7.88 9.80	50	Ja	Berechnungsmodell
24	(Pilot-)Lagerstollen- abzweiger und Umladebereiche HAA	D2 E10	6.55	40	Ja	Berechnungsmodell
25	Zugangstunnel JO (konv.)	A10 A20 A50	5.40	50	Nein	Planungsannahme
26	Zugangstunnel JO (TBM)	A90 A91	9.75	100	Nein	Erweiterte Analogie des Übernahmebereichs SMA

Tab. B-2: Bemessung der weiteren Bauwerke mittels Analogieschlüssen

Übersicht der standortspezifischen Bauteilstärke und Betonqualität

Bauwerk	NP	Nutzungs- dauer [a]	JO Stärke [cm]	NL Stärke [cm]	ZNO Stärke [cm]	Festigkeit
Zentraler Bereich	div.					
	D2x	100	35	55	45	C30/37
	R1x	100	40	50	45	C30/37
	R1x	50	35	50	45	C30/37
Abstellfläche Baufahrzeuge	T10	100	40	50	45	C30/37
Umlad Ausbruchmaterial	U10	100	40	50	45	C30/37
Abluftstollen beim Schachtfuss	Y10	100	35	55	45	C30/37
Demonstrations- betriebstunnel SMA	D20	25	35	50	45	C30/37
Demonstrations- übernahmebereich SMA	M10 I10	25	35	50	45	C30/37
Demonstrations- lagerkaverne	K90	25	40	40	40	C30/37

Tab. B-2: Fortsetzung

Bauwerk	NP	Nutzungs- dauer [a]	JO Stärke [cm]	NL Stärke [cm]	ZNO Stärke [cm]	Festigkeit
Experiment- bereiche	D10	100	35	55	45	C30/37
Demonstrations- betriebstunnel HAA	D20	40	35	50	45	C30/37
Demonstrations- umladebereich HAA	E10	40	35	50	45	C30/37
Demonstrations- lagerstollen HAA	F10	4	25	40	35	C60/75
Zugangsschacht, HB5	S30	50	-	110	90	C30/37
Betriebstunnel SMA, bis Kontrollstollen	D20	100	35	55	45	C30/37
Aufweitung Betriebstunnel SMA	W10	100	40	50	45	C30/37
Aufweitung Betriebstunnel SMA	W10	50	35	50	45	C30/37
Lüftungstunnel SMA	D20	50	35	50	45	C30/37
Kontrollstollen SMA	D10	100	35	55	45	C30/37
Pilotlager SMA	K90	25	40	40	40	C30/37
Betriebstunnel HAA, bis Kontrollstollen	D20	100	35	55	45	C30/37
Aufweitung Betriebstunnel HAA	W10	100	40	50	45	C30/37
Aufweitung Betriebstunnel HAA	W10	50	35	50	45	C30/37
Lüftungstunnel HAA	D20	40	35	50	45	C30/37
Bautunnel HAA	D20	40	35	50	45	C30/37
Pilotlager HAA	F10	4	25	40	35	C60/75
Kontrollstollen HAA	D10	100	35	55	45	C30/37

Bauwerk	NP	Nutzungs- dauer [a]	JO Stärke [cm]	NL Stärke [cm]	ZNO Stärke [cm]	Festigkeit
Querverbindungs- tunnel HAA	D20	100	35	50	45	C30/37
Querverbindungs- tunnel SMA	D20	100	35	50	45	C30/37
Zugangstunnel JO (konv.)	A10 A20 A50	50	45	-	-	C30/37
Zugangstunnel JO (TBM)	A90 A91	100	40	-	-	C30/37

Tab. B-2: Fortsetzung

Tab. B-3: Bemessung der weiteren Bauwerke mittels Analogieschlüssen

Übersicht des standortspezifischen Überschnitts und Mehrausbruch

Bauwerk	NP	Nutzungs- dauer [a]	JO Mehrausbruch/ Überschnitt [cm]	NL Mehrausbruch/ Überschnitt [cm]	ZNO Mehrausbruch/ Überschnitt [cm]
Betriebsschacht, HB5	S90	100	-	5	5
Lüftungsschacht, HB5	S60 S90	100	5 -	5 -	5 5
Zentraler Bereich	Div.				
	D20	100	5	15	10
	R10	100	5	15	10
	R10	50	5	15	10
Abstellfläche Baufahrzeuge	T10	100	5	15	10
Umlad Ausbruchmaterial	U10	100	5	15	10
Abluftstollen beim Schachtfuss	Y10	100	5	15	10
Demonstrations- betriebstunnel SMA	D20	25	5	10	10
Demonstrations- übernahmebereich SMA	M10 I10	25	5	10	10
Demonstrations- lagerkaverne	K90	25	10	20	15
Experimentbereiche	D10	100	5	15	10

Tab. B-3: Fortsetzung

Bauwerk	NP	Nutzungs- dauer	JO Mehrausbruch/ Überschnitt	NL Mehrausbruch/ Überschnitt	ZNO Mehrausbruch/ Überschnitt
		[a]	[cm]	[cm]	[cm]
Demonstrations- betriebstunnel HAA	D20	40	5	15	10
Demonstrations- umladebereich HAA	E10	40	5	15	10
Demonstrations- lagerstollen HAA	F10	4	4.5	4.5	4.5
Zugangsschacht, HB5	S30	50	-	5	5
Betriebstunnel SMA, bis Kontrollstollen	D20	100	5	10	10
Aufweitung Betriebstunnel SMA	W10	100	5	15	10
Aufweitung Betriebstunnel SMA	W10	50	5	15	10
Lüftungstunnel SMA	D20	50	5	10	10
Kontrollstollen SMA	D10	100	5	10	10
Pilotlager SMA	K90	25	10	20	15
Betriebstunnel HAA, bis Kontrollstollen	D20	100	5	15	10
Aufweitung Betriebstunnel HAA	W10	100	5	15	10
Aufweitung Betriebstunnel HAA	W10	50	5	15	10
Lüftungstunnel HAA	D20	40	5	15	10
Bautunnel HAA	D20	40	5	15	10
Pilotlager HAA	F10	4	4.5	4.5	4.5
Kontrollstollen HAA	D10	100	5	10	10
Querverbindungs- tunnel HAA	D20	100	5	15	10
Querverbindungs- tunnel SMA	D20	100	5	10	10
Zugangstunnel JO (konv.)	A10 A20 A50	50	5	-	-
Zugangstunnel JO (TBM)	A90 A91	100	5	-	-

Anhang C Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort JO

C.1 Definition der Schnittebenen im Modell

~	Position des Schnitts	Richtung des Normalvektors der Schnittebene				
Schnitt		х	У	Z		
А	y = 50.0	0	1	0		
В	y = 27.5	0	1	0		
С	x = -45.5	1	0	0		
D	x = -121.5	1	0	0		

Fig. C-1 Definition der Schnittebenen HAA

Querschnitte in Rot (Schnitt A, B, C, D): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1, 2): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

C.2 Schnitt A

C.2.1 Spannungsverläufe

Fig. C-2 Porenwasserdruck entlang der Abfragelinie Parament

Fig. C-3 Porenwasserdruck entlang der Abfragelinie Firste

Fig. C-4 Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. C-5 Spannung (σ 'xx) entlang der Abfragelinie Firste

Fig. C-6 Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. C-7 Spannung (σ 'yy) entlang der Abfragelinie Firste

Fig. C-8 Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. C-9 Spannung (σ 'zz) entlang der Abfragelinie Firste

C.2.2 Verformungen

Fig. C-10 Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit

Fig. C-11 Verformungen des Querschnitts A, Kurzzeit

Fig. C-12 Verformungen des Querschnitts A, 40 Jahre

Fig. C-13 Verformungen des Querschnitts A, 100 Jahre

C.2.3 Schnittgrössen

Fig. C-14 Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. C-15 Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. C-16 Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre

Fig. C-17 Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. C-18 Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 40 Jahre

Fig. C-19 Biegemoment (Mx), Schnitt A, 40 Jahre

Fig. C-20 Querkraft (Qy), Schnitt A, 40 Jahre

Fig. C-21 Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. C-22 Biegemoment (Mx), Schnitt A, 100 Jahre

Fig. C-23 Querkraft (Qy), Schnitt A, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch						
Abfrageposition	Kombination	40 Jahre	100 Jahre			
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-3583.0 kN, -42.4 kNm	-3974.2 kN, 16.8 kNm			
	N, M _{max}	-3583.0 kN, -42.4 kNm	-3944.4 kN, 49.5 kNm			
Bemessungsrelevante	N _{max} , M	-3751.3 kN, -35.9 kNm	-4115.7 kN, 29.7 kNm			
Schnittkräfte (gesamter Abschlag) ²	N, M _{max}	-3583.0 kN, -42.4 kNm	-3944.4 kN, 49.5 kNm			

Tab. C-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

C.2.4 Nachweise

Fig. C-24 Tragsicherheitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. C-25 Gebrauchstauglichkeitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 35 cm

C.3 Schnitt B

Fig. C-26 Verformung, Schnitt B, D=10.8 m, Kurzzeit

Fig. C-27 Verformung, Schnitt B, D=10.8 m, 40 Jahre

Fig. C-28 Verformung, Schnitt B, D=10.8 m, 100 Jahre

C.4 Schnitt C

C.4.1 Spannungsverläufe

Fig. C-29 Porenwasserdruck entlang der Abfragelinie Parament

Fig. C-30 Spannung (o'xx) entlang der Abfragelinie Parament

Fig. C-31 Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. C-32 Spannung (σ 'zz) entlang der Abfragelinie Parament

C.4.2 Verformungen

Fig. C-33 Verformungen des Querschnitts, Schnitt 1, Kurzzeit

Fig. C-34 Verformungen des Querschnitts, Schnitt 1, 40 Jahre

Fig. C-35 Verformungen des Querschnitts, Schnitt 1, 100 Jahre

C.4.3 Schnittgrössen

Fig. C-36 Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. C-37 Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. C-38 Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre

Fig. C-39 Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. C-40 Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 40 Jahre

Fig. C-41 Biegemoment (Mx), Schnitt 1, 40 Jahre

Fig. C-42 Querkraft (Qy), Schnitt 1, 40 Jahre

Fig. C-43 Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 100 Jahre

Fig. C-44 Biegemoment (Mx), Schnitt 1, 100 Jahre

Fig. C-45 Querkraft (Qy), Schnitt 1, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	40 Jahre	100 Jahre		
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-4282.2 kN, 5.2 kNm	-4705.6 kN, 1.8 kNm		
	N, $ M _{max}$	-4134.6 kN, 30.7 kNm	-4467.2 kN, 38.2 kNm		
Bemessungsrelevante	N _{max} , M	-4315.9 kN, -21.8 kNm	-4768.2 kN, -30.7 kNm		
Schnittkräfte (gesamter Abschlag) ²	N, $ M _{max}$	-3978.1 kN, 42.2 kNm	-4757.5 kN, 52.0 kNm		

Tab. C-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

C.4.4 Nachweise

Fig. C-46 Tragsicherheitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. C-47 Gebrauchstauglichkeitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 35 cm

C.5 Schnitt D

C.5.1 Spannungsverläufe

Fig. C-48 Porenwasserdruck entlang der Abfragelinie Parament

Fig. C-49 Spannung (o'xx) entlang der Abfragelinie Parament

Fig. C-50 Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. C-51 Spannung (σ 'zz) entlang der Abfragelinie Parament

C.5.2 Verformungen

Fig. C-52 Radialverschiebung vs. Ortsbrustposition, Lagerstollen, Schnitt 2

Fig. C-53 Verformungen des Querschnitts, Schnitt 2, Kurzzeit

Fig. C-54 Verformungen des Querschnitts, Schnitt 2, 4 Jahre

Fig. C-55 Verformungen des Querschnitts, Schnitt 2, 100 Jahre

C.5.3 Schnittgrössen

Fig. C-56 Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. C-57 Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. C-58 Normalkraft Ny (MN/m) in Umfangsrichtung, 4 Jahre

Fig. C-59 Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. C-60 Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, Kurzzeit

Fig. C-61 Biegemoment (Mx), Schnitt 2, Kurzzeit

Fig. C-62 Querkraft (Qy), Schnitt 2, Kurzzeit

Fig. C-63 Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 4 Jahre

Fig. C-64 Biegemoment (Mx), Schnitt 2, 4 Jahre

Fig. C-65 Querkraft (Qy), Schnitt 2, 4 Jahre

Fig. C-66 Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 100 Jahre

Fig. C-67 Biegemoment (Mx), Schnitt 2, 100 Jahre

Fig. C-68 Querkraft (Qy), Schnitt 2, 100 Jahre

Tab. C-3: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	4 Jahre	100 Jahre		
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-3189.8 kN, -9.8 kNm	-3984.0 kN, -30.5 kNm		
	N, $ M _{max}$	-2341.3 kN, 14.3 kNm	-2215.4 kN, 36.4 kNm		
Bemessungsrelevante	N _{max} , M	-3668.8 kN, -10.0 kNm	-4460.0 kN, -30.6 kNm		
Schnittkräfte (gesamter Abschlag) ²	N, M _{max}	-2341.3 kN, 14.3 kNm	-2215.4 kN, 36.4 kNm		

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

 2 - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (1 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

C-37

C.5.4 Nachweise

C5.4.1 Nachweise im Schnitt 2 – 4 Jahre

Fig. C-69 Tragsicherheitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 25 cm

Fig. C-70 Gebrauchstauglichkeitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 25 cm

GEOMETRIE		-200.00	-100.00	0.00	100 00	200.00	
Länge Tübbing	[mm]	1000	-200.00	-100.00		100.00	200.00
Breite Tübbing	[mm]	250					
Randabstand, bergseitig	- [mm]	50		/			
Randabstand, hohlraumseitig	[mm]	50		-200	0.00	•	
Länge Führunsstab	[mm]			-2000	0.00		
Breite Führungsstab	[mm]			Γ			
Exzentrizität der Fuge e0	[mm]	0		•		•	
Breite, Fuge	[mm]	150		•		•	
Länge, Fuge	[mm]	900		-400	0.00		
Fläche, gesamt, Fuge	[mm²]	132500			0.00		
Versatz, hohlraumseitig (+)	[mm]	0					
SCHNITTKRÄI	FTE						
Normalkraft Nd	[kN]	-4953		-600	0.00		
Biegemoment Md	[kNm]	-14					
Querkraft Qd	[kN]	0					
MATERIALKENNWERTE UND SICHERHEITEN							
eta_fc	[-]	0.79		-8000	0.00		
gamma_c	[-]	1.50					
fck	[MN/m²]	60.0					
fcd	[MN/m²]	31.6					
NACHWEISFÜHF	NACHWEISFÜHRUNG						
Fugenmoment	[kNm]	-14					
Exzentrizität der Fugenkräfte	[mm]	3					
Breite des Kontakts	[mm]	145					
Fläche des Kontakts	[mm²]	135000					
Kontaktlage	[-]	raumseitig					-
Randabbstand, hohlraumseitig	[mm]	50	Sc	hnittkräfte r	nach 4 Jahr	en:	ļ
Randabstand, bergseitig	[mm]	55		N [kN]	M [kNm]	FoS	ļ
Maßgeblicher Randabstand	[mm]	50	N _{max}	-4952.9	-13.5	1.181	l
Fläche der Lastausbreitung	[mm²]	244549	M _{max} +	-3160.7	19.3	1.869	
Lasterhöhung	[-]	1.37	M _{max} -	-4387.6	-16.7	1.337	l
Aufnehmbare Spannung	[MN/m²]	43.3	(M/N) _{max} +	-4387.6	-16.7	1.337	J
Kontaktspannung	[MN/m²]	36.7	(M/N) _{max} -	-3160.7	19.3	1.869	J
		l					-
36.7	' <	43.3		NACHWEIS	ERBRACHT		1.18
		ļ					

Fig. C-71 Längsfugennachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 25 cm

C5.4.2 Nachweise im Schnitt 2 – 75 Jahre

Der Nachweis wird mit einem Sicherheitsfaktor von SF = 1.0 geführt. Schnittkräfte infolge einer zusätzlichen thermischen Belastung von 11.0 MPa werden in Rot dargestellt.

Fig. C-72 Tragsicherheitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 25 cm

Fig. C-73 Gebrauchstauglichkeitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 25 cm

Fig. C-74 Längsfugennachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 25 cm

Anhang D Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort JO

D.1 Definition der Schnittebenen im Modell

Schnitt	Position des	Richtung des Normalvektors der Schnittebene			
	Schnitts	Х	У	Z	
А	y = 126	0	1	0	
В	y = 173	0	1	0	
С	x = 60	-1	0	0	
D	x = 250	-1	0	0	

Fig. D-1: Definition der Schnittebenen SMA

Querschnitte in Rot (Schnitt A, B, C, D): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1, 2): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

D.2 Schnitt A

D.2.1 Spannungsverläufe

Fig. D-2: Porenwasserdruck entlang der Abfragelinie Parament

Fig. D-3: Porenwasserdruck entlang der Abfragelinie Firste

Fig. D-4: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. D-5: Spannung (σ 'xx) entlang der Abfragelinie Firste

Fig. D-6: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. D-7: Spannung (σ 'yy) entlang der Abfragelinie Firste

Fig. D-8: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. D-9: Spannung (σ 'zz) entlang der Abfragelinie Firste

Fig. D-10: Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit

Fig. D-11: Verformung des Querschnitts A, Kurzzeit

Fig. D-12: Verformung des Querschnitts A, 50 Jahre

Fig. D-13: Verformung des Querschnitts A, 100 Jahre

D.2.3 Schnittgrössen

Fig. D-14: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. D-15: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. D-16: Normalkraft Ny (MN/m) in Umfangsrichtung, 50 Jahre

Fig. D-17: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. D-18: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. D-19: Biegemoment (Mx), Schnitt A, 50 Jahre

Fig. D-20: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. D-21: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. D-22: Biegemoment (Mx), Schnitt A, 100 Jahre

Fig. D-23: Querkraft (Qy), Schnitt A, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch						
Abfrageposition	Kombination	50 Jahre	100 Jahre			
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-4354 kN, -10.3 kNm	-4638 kN, -13.6 kNm			
	N, M _{max}	-2191 kN, 15.2 kNm	-2251 kN, 20.2 kNm			
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-4379 kN, -10.1 kNm	-4641 kN, -14.7 kNm			
	N, $ M _{max}$	-2191 kN, 15.2 kNm	-2251 kN, 20.2 kNm			

Tab. D-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

D.2.4 Nachweise

Fig. D-24: Tragsicherheitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. D-25: Gebrauchstauglichkeitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 35 cm

D.3 Schnitt B

Fig. D-26: Verformung des Querschnitts B, D=12.3 m, Kurzzeit

Fig. D-27: Verformung des Querschnitts B, D=12.3 m, 50 Jahre

Fig. D-28: Verformung des Querschnitts B, D=12.3 m, 100 Jahre

D.4 Schnitt C

D.4.1 Spannungsverläufe

Fig. D-29: Porenwasserdruck entlang der Abfragelinie Parament

Fig. D-30: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. D-31: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. D-32: Spannung (σ 'zz) entlang der Abfragelinie Parament

D.4.2 Verformungen

Fig. D-33: Radialverschiebung vs. Ortsbrustposition, Schnitt 1, Kurzzeit

Fig. D-34: Verformung des Querschnitts 1, Kurzzeit

Fig. D-35: Verformung des Querschnitts 1, 25 Jahre

Fig. D-36: Verformung des Querschnitts 1, 100 Jahre

D.4.3 Schnittgrössen

Fig. D-37: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. D-38: Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit

Fig. D-39: Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre

Fig. D-40: Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre

Fig. D-41: Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 25 Jahre

Fig. D-42: Biegemoment (My), Schnitt 1, 25 Jahre

Fig. D-43: Querkraft (Qx), Schnitt 1, 25 Jahre

Fig. D-44: Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 100 Jahre

Fig. D-45: Biegemoment (My), Schnitt 1, 100 Jahre

Fig. D-46: Querkraft (Qx), Schnitt 1, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch				
Abfrageposition	Kombination	25 Jahre	100 Jahre	
Schnittkräfte im	N _{max} , M	-4219 kN, -3.2 kNm	-4709 kN, -9.9 kNm	
dargestellten Schnitt ¹	N, M _{max}	-2864 kN, -10.3 kNm	-4344 kN, -12.7 kNm	
Bemessungsrelevante	N _{max} , M	-4236 kN, -2.8 kNm	-4755 kN, -9.7 kNm	
Schnittkräfte (gesamter Abschlag) ²	N, M _{max}	-2890 kN, -15.4 kNm	-2233 kN, 20.5 kNm	

Tab. D-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

D.4.4 Nachweise

Fig. D-47: Tragsicherheitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. D-48: Gebrauchstauglichkeitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 35 cm

D.5 Schnitt D

D.5.1 Spannungsverläufe

Fig. D-49: Porenwasserdruck entlang der Abfragelinie Parament

Fig. D-50: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. D-51: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. D-52: Spannung (σ 'zz) entlang der Abfragelinie Parament

D.5.2 Verformungen

Fig. D-53: Radialverschiebung vs. Ortsbrustposition, Schnitt 2, Kurzzeit

Fig. D-54: Verformung des Querschnitts 2, Kurzzeit

Fig. D-55: Verformung des Querschnitts 2, 25 Jahre

Fig. D-56: Verformung des Querschnitts 2, 100 Jahre

D.5.3 Schnittgrössen

Fig. D-57: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. D-58: Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit

Fig. D-59: Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre

Fig. D-60: Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre

Fig. D-61: Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 25 Jahre

Fig. D-62: Biegemoment (My), Schnitt 2, 25 Jahre

Fig. D-63: Querkraft (Qx), Schnitt 2, 25 Jahre

Fig. D-64: Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 100 Jahre

Fig. D-65: Biegemoment (My), Schnitt 2, 100 Jahre

Fig. D-66: Querkraft (Qx), Schnitt 2, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch				
Abfrageposition	Kombination	25 Jahre	100 Jahre	
Schnittkräfte im	N _{max} , M	-5586 kN, 74.2 kNm	-8863 kN, 97.0 kNm	
dargestellten Schnitt ¹	N, M _{max}	-5449 kN, 103.9 kNm	-6665 kN, -139.3 kNm	
Bemessungsrelevante	N _{max} , M	-5635 kN, 78.5 kNm	-8958 kN, 90.6 kNm	
Schnittkräfte (gesamter Abschlag) ²	N, $ M _{max}$	-5403 kN, 108.3 kNm	-6337 kN, -149.4 kNm	

Tab. D-3: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

D.5.4 Nachweise

Fig. D-67: Tragsicherheitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm

Fig. D-68: Gebrauchstauglichkeitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm

Anhang E Dokumentation der numerischen Ergebnisse der «erweiterten Analogie» für den Standort JO

E.1 Definition der Schnittebenen im Modell

E.1.1 Kontinuumsmodell HAA

Schnitt Position des		Richtung des Normalvektors der Schnittebene		
	Schnitts	Х	У	Z
А	y = 50.0	0	1	0
1	x = -45.5	1	0	0

Fig. E-1: Definition der Schnittebenen HAA

E.1.2 Kontinuumsmodell SMA

Schnitt	Position des	Richtung des Normalvektors der Schnittebene		
	Schnitts	Х	у	Z
А	y = 126.0	0	1	0
3	x = 115.0	-1	0	0

Fig. E-2: Definition der Schnittebenen SMA

Querschnitte in Rot (Schnitt A): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1 und 3): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

E.2.1 Schnitt A: Betriebstunnel, 100 Jahre

Fig. E-3: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. E-4: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm

E.2.2 Schnitt 1: Umladebereich, 50 Jahre

Fig. E-5: Tragsicherheitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. E-6: Gebrauchstauglichkeitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 35 cm

E.2.3 Schnitt 1: Umladebereich, 100 Jahre

Fig. E-7: Tragsicherheitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 40 cm

Fig. E-8: Gebrauchstauglichkeitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 40 cm

E.3 Nachweis auf Basis des Kontinuumsmodells SMA

E.3.1 Schnitt A: Betriebstunnel, 100 Jahre

Fig. E-9: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. E-10: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 35 cm

E.3.2 Schnitt 3: Übernahmebereich, 25 Jahre

Fig. E-11: Tragsicherheitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. E-12: Gebrauchstauglichkeitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 35 cm

E.3.3 Schnitt 3: Übernahmebereich, 50 Jahre

Fig. E-13: Tragsicherheitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 35 cm

Fig. E-14: Gebrauchstauglichkeitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 35 cm

E.3.4 Schnitt 3: Übernahmebereich, 100 Jahre

Fig. E-15: Tragsicherheitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 40 cm

Fig. E-16: Gebrauchstauglichkeitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 40 cm

Anhang F Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort NL

F.1 Definition der Schnittebenen im Modell

S-huitt Position de	Position des	Richtung des Normalvektors der Schnittebene			
Schnitt	Schnitts	x	У	Z	
А	y = 50.0	0	1	0	
В	y = 27.5	0	1	0	
С	x = -45.5	1	0	0	
D	x = -121.5	1	0	0	

Fig. F-1:	Definition of	der Schnittebenen	HAA
0			
Querschnitte in Rot (Schnitt A, B, C, D): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1, 2): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

F.2 Schnitt A

F.2.1 Spannungsverläufe

Fig. F-2: Porenwasserdruck entlang der Abfragelinie Parament

Fig. F-3: Porenwasserdruck entlang der Abfragelinie Firste

Fig. F-4: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. F-5: Spannung (σ 'xx) entlang der Abfragelinie Firste

Fig. F-6: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. F-7: Spannung (σ 'yy) entlang der Abfragelinie Firste

Fig. F-8: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. F-9: Spannung (σ 'zz) entlang der Abfragelinie Firste

Fig. F-10: Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit

Fig. F-11: Verformungen des Querschnitts A, Kurzzeit

Fig. F-12: Verformungen des Querschnitts A, 40 Jahre

Fig. F-13: Verformungen des Querschnitts A, 100 Jahre

F.2.3 Schnittgrössen

Fig. F-14: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. F-15: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. F-16: Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre

Fig. F-17: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. F-18: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 40 Jahre

Fig. F-19: Biegemoment (Mx), Schnitt A, 40 Jahre

Fig. F-20: Querkraft (Qy), Schnitt A, 40 Jahre

Fig. F-21: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. F-22: Biegemoment (Mx), Schnitt A, 100 Jahre

Fig. F-23: Querkraft (Qy), Schnitt A, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch						
Abfrageposition	Kombination	40 Jahre	100 Jahre			
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-6138.8 kN, 69.9 kNm	-7059.2 kN, 46.7 kNm			
	N, M _{max}	-6104.1 kN, 80.4 kNm	-7057.2 kN, 93.9 kNm			
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-6336.3 kN, -42.1 kNm	-7219.78 kN, -2.1 kNm			
	N, M _{max}	-6140.1 kN, 109.6 kNm	-6506.1 kN, 116.3 kNm			

Tab. F-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

 2 - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

F.2.4 Nachweise

Fig. F-24: Tragsicherheitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. F-25: Gebrauchstauglichkeitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 50 cm

F.3 Schnitt B

Fig. F-26: Verformung, Schnitt B, D=10.8 m, Kurzzeit

Fig. F-27: Verformung, Schnitt B, D=10.8 m, 40 Jahre

Fig. F-28: Verformung, Schnitt B, D=10.8 m, 100 Jahre

F.4 Schnitt C

F.4.1 Spannungsverläufe

Fig. F-29: Porenwasserdruck entlang der Abfragelinie Parament

Fig. F-30: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. F-31: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. F-32: Spannung (σ 'zz) entlang der Abfragelinie Parament

F.4.2 Verformungen

Fig. F-33: Verformungen des Querschnitts, Schnitt 1, Kurzzeit

Fig. F-34: Verformungen des Querschnitts, Schnitt 1, 40 Jahre

Fig. F-35: Verformungen des Querschnitts, Schnitt 1, 100 Jahre

F.4.3 Schnittgrössen

Fig. F-36: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. F-37: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. F-38: Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre

Fig. F-39: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. F-40: Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 40 Jahre

Fig. F-41: Biegemoment (Mx), Schnitt 1, 40 Jahre

Fig. F-42: Querkraft (Qy), Schnitt 1, 40 Jahre

Fig. F-43: Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 100 Jahre

Fig. F-44: Biegemoment (Mx), Schnitt 1, 100 Jahre

Fig. F-45: Querkraft (Qy), Schnitt 1, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	40 Jahre	100 Jahre		
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-5779.9 kN, 51.6 kNm	-6812.5 kN, 34.0 kNm		
	N, M _{max}	-5408.6 kN, 62.8 kNm	-5039.7 kN, 76.1 kNm		
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-5784.1 kN, 46.4 kNm	-6814.0 kN, 28.7 kNm		
	N, M _{max}	-5246.4 kN, 88.1 kNm	-5349.6 kN, 94.9 kNm		

Tab. F-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

F.4.4 Nachweise

Fig. F-46: Tragsicherheitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. F-47: Gebrauchstauglichkeitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 50 cm

F.5 Schnitt D

F.5.1 Spannungsverläufe

Fig. F-48: Porenwasserdruck entlang der Abfragelinie Parament

Fig. F-49: Spannung (o'xx) entlang der Abfragelinie Parament

Fig. F-50: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. F-51: Spannung (σ 'zz) entlang der Abfragelinie Parament

F.5.2 Verformungen

Fig. F-52: Radialverschiebung vs. Ortsbrustposition, Lagerstollen, Schnitt 2

Fig. F-53: Verformungen des Querschnitts, Schnitt 2, Kurzzeit

Fig. F-54: Verformungen des Querschnitts, Schnitt 2, 4 Jahre

Fig. F-55: Verformungen des Querschnitts, Schnitt 2, 100 Jahre

F.5.3 Schnittgrössen

Fig. F-56: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. F-57: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. F-58: Normalkraft Ny (MN/m) in Umfangsrichtung, 4 Jahre

Fig. F-59: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. F-60: Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, Kurzzeit

Fig. F-61: Biegemoment (Mx), Schnitt 2, Kurzzeit

Fig. F-62: Querkraft (Qy), Schnitt 2, Kurzzeit

Fig. F-63: Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 4 Jahre

Fig. F-64: Biegemoment (Mx), Schnitt 2, 4 Jahre

Fig. F-65: Querkraft (Qy), Schnitt 2, 4 Jahre

Fig. F-66: Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 100 Jahre

Fig. F-67: Biegemoment (Mx), Schnitt 2, 100 Jahre

Fig. F-68: Querkraft (Qy), Schnitt 2, 100 Jahre

Tab. F-3: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	4 Jahre	100 Jahre		
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-5638.1 kN, 8.5 kNm	-7067.8 kN, -70.5 kNm		
	N, M _{max}	-5175.9 kN, 27.8 kNm	-4339.3 kN, 103.7 kNm		
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-6774.5 kN, 18.7 kNm	-8198.3 kN, -55.3 kNm		
	N, M _{max}	-6729.8 kN, 23.4 kNm	-4339.3 kN, 103.7 kNm		

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

 2 - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (1 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.
F.5.4 Nachweise

F.5.4.1 Nachweise im Schnitt 2 – 4 Jahre

Fig. F-69: Tragsicherheitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 40 cm

Fig. F-70: Gebrauchstauglichkeitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 40 cm

GEOMETRIE							
Länge Tübbing	[mm]	1000	-000.00-	+00.00-200.	00 0.00 20	10.00 400.00	1000.00
Breite Tübbing	[mm]	400					
Randabstand, bergseitig	[mm]	50		200	0.00		
Randabstand, hohlraumseitig	[mm]	50					
Länge Führunsstab	[mm]						
Breite Führungsstab	[mm]			-400	0.00 -		
Exzentrizität der Fuge e0	[mm]	0		I = 1			
Breite, Fuge	[mm]	300		T I		I	
Länge, Fuge	[mm]	900		-600	0 00 -	•	
Fläche, gesamt, Fuge	[mm²]	267500		V i			
Versatz, hohlraumseitig (+)	[mm]	0					
SCHNITTKRÄFTE				-800	0.00		
Normalkraft Nd	[kN]	-9146				/	
Biegemoment Md	[kNm]	25			X [/		
Querkraft Qd	[kN]	0		-1000	0.00		
MATERIALKENNWERTE UND SICHERHEITEN							
eta_fc	[-]	0.79		-1200	0.00		
gamma_c	[-]	1.50					
fck	[MN/m²]	60.0					
fcd	[MN/m²]	31.6					
NACHWEISFÜHRUNG							
Fugenmoment	[kNm]	25					
Exzentrizität der Fugenkräfte	[mm]	-3					
Breite des Kontakts	[mm]	294					
Fläche des Kontakts	[mm²]	270000					
Kontaktlage	[-]	bergseitig					
Randabbstand, hohlraumseitig	[mm]	56	Schnittkräfte nach 4 Jahren:				
Randabstand, bergseitig	[mm]	50		N [kN]	M [kNm]	FoS	
Maßgeblicher Randabstand	[mm]	50	N _{max}	-9145.6	25.2	1.138	
Fläche der Lastausbreitung	[mm²]	394489	M _{max} +	-9085.2	31.6	1.146	
Lasterhöhung	[-]	1.22	M _{max} -	-8724.2	-49.0	1.196	
Aufnehmbare Spannung	[MN/m²]	38.6	(M/N) _{max} +	-7615.1	-45.5	1.371	
Kontaktspannung	[MN/m²]	33.9	(M/N) _{max} -	-6351.0	25.7	1.641	l
33.9) <	38.6		NACHWEIS	ERBRACHT		1.13

Fig. F-71: Längsfugennachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 40 cm

F.5.4.2 Nachweise im Schnitt 2 – 75 Jahre

Der Nachweis wird mit einem Sicherheitsfaktor von SF = 1.0 geführt. Schnittkräfte infolge einer zusätzlichen thermischen Belastung von 10.0 MPa werden in Rot dargestellt.

Fig. F-72: Tragsicherheitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 40 cm

Fig. F-73: Gebrauchstauglichkeitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 40 cm

Fig. F-74: Längsfugennachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 40 cm

Anhang G Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort NL

G.1 Definition der Schnittebenen im M	Iodell
---------------------------------------	--------

Schnitt	Position des	Richtung des Normalvektors der Schnittebene			
	Schnitts	Х	У	Z	
А	y = 126	0	1	0	
В	y = 173	0	1	0	
С	x = 60	-1	0	0	
D	x = 250	-1	0	0	

Fig. G-1: Definition der Schnittebenen SMA

Querschnitte in Rot (Schnitt A, B, C, D): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1, 2): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

G.2 Schnitt A

Fig. G-2: Porenwasserdruck entlang der Abfragelinie Parament

Fig. G-3: Porenwasserdruck entlang der Abfragelinie Firste

Fig. G-4: Spannung (o'xx) entlang der Abfragelinie Parament

Fig. G-5: Spannung (σ 'xx) entlang der Abfragelinie Firste

Fig. G-6: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. G-7: Spannung (σ 'yy) entlang der Abfragelinie Firste

Fig. G-8: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. G-9: Spannung (σ 'zz) entlang der Abfragelinie Firste

G.2.2 Verformungen

Fig. G-10: Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit

Fig. G-11: Verformungen des Querschnitts A, Kurzzeit

Fig. G-12: Verformungen des Querschnitts A, 50 Jahre

Fig. G-13: Verformungen des Querschnitts A, 100 Jahre

Fig. G-14: Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau

Fig. G-15: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. G-16: Normalkraft Ny (MN/m) in Umfangsrichtung, 50 Jahre

Fig. G-17: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. G-18: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. G-19: Biegemoment (Mx), Schnitt A, 50 Jahre

Fig. G-20: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. G-21: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. G-22: Biegemoment (Mx), Schnitt A, 100 Jahre

Fig. G-23: Querkraft (Qy), Schnitt A, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch							
Abfrageposition	Kombination	50 Jahre	100 Jahre				
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-7098 kN, 11.5 kNm	-7569 kN, -0.97 kNm				
	N, M _{max}	-5639 kN, -57.9 kNm	-5922 kN, -63.5 kNm				
Bemessungsrelevante	N _{max} , M	-7236 kN, 19.2 kNm	-7686 kN, 6.32 kNm				
Schnittkräfte (gesamter Abschlag) ²	N, $ M _{max}$	-5654 kN, -59.8 kNm	-5931 kN, -65.6 kNm				

Tab. G-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

G.2.4 Nachweise

Fig. G-24: Tragsicherheitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. G-25: Gebrauchstauglichkeitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 50 cm

G.3 Schnitt B

Fig. G-26: Verformung, Schnitt B, D=12.3 m, Kurzzeit

Fig. G-27: Verformung, Schnitt B, D=12.3 m, 50 Jahre

Fig. G-28: Verformung, Schnitt B, D=12.3 m, 100 Jahre

G.4 Schnitt C

G.4.1 Spannungsverläufe

Fig. G-29: Porenwasserdruck entlang der Abfragelinie Parament

Fig. G-30: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. G-31: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. G-32: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. G-33: Radialverschiebung vs. Ortsbrustposition, Schnitt 1, Kurzzeit

Fig. G-34: Verformung des Querschnitts 1, Kurzzeit

Fig. G-35: Verformung des Querschnitts 1, 25 Jahre

Fig. G-36: Verformung des Querschnitts 1, 100 Jahre

Fig. G-37: Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau

Fig. G-38: Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit

Fig. G-39: Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre

Fig. G-40: Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre

Fig. G-41: Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 25 Jahre

Fig. G-42: Biegemoment (My), Schnitt 1, 25 Jahre

Fig. G-43: Querkraft (Qx), Schnitt 1, 25 Jahre

Fig. G-44: Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 100 Jahre

Fig. G-45: Biegemoment (My), Schnitt 1, 100 Jahre

Fig. G-46: Querkraft (Qx), Schnitt 1, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	25 Jahre	100 Jahre		
Schnittkräfte im	N _{max} , M	-6336 kN, 27.6 kNm	-7711 kN, -0.8 kNm		
dargestellten Schnitt ¹	N, M _{max}	-5179 kN, -53.1 kNm	-5733 kN, -41.7 kNm		
Bemessungsrelevante	N _{max} , M	-6374 kN, 29.8 kNm	-7847 kN, -3.6 kNm		
Schnittkräfte (gesamter Abschlag) ²	N, $ M _{max}$	-5135 kN, -61.4 kNm	-4420 kN, 55.3 kNm		

Tab. G-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

G.4.4 Nachweise

Fig. G-47: Tragsicherheitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. G-48: Gebrauchstauglichkeitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 50 cm

G.5 Schnitt D

G.5.1 Spannungsverläufe

Fig. G-49: Porenwasserdruck entlang der Abfragelinie Parament

Fig. G-50: Spannung (o'xx) entlang der Abfragelinie Parament

Fig. G-51: Spannung (o'yy) entlang der Abfragelinie Parament

Fig. G-52: Spannung (σ 'zz) entlang der Abfragelinie Parament

G.5.2 Verformungen

Fig. G-53: Radialverschiebung vs. Ortsbrustposition, Schnitt 2, Kurzzeit

Fig. G-54: Verformung des Querschnitts 2, Kurzzeit

Fig. G-55: Verformung des Querschnitts 2, 25 Jahre

Fig. G-56: Verformung des Querschnitts 2, 100 Jahre
G.5.3 Schnittgrössen

Fig. G-57: Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau

Fig. G-58: Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit

Fig. G-59: Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre

Fig. G-60: Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre

Fig. G-61: Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 25 Jahre

Fig. G-62: Biegemoment (My), Schnitt 2, 25 Jahre

Fig. G-63: Querkraft (Qx), Schnitt 2, 25 Jahre

Fig. G-64: Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 100 Jahre

Fig. G-65: Biegemoment (My), Schnitt 2, 100 Jahre

Fig. G-66: Querkraft (Qx), Schnitt 2, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch				
Abfrageposition	Kombinatio n	25 Jahre	100 Jahre	
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-5479 kN, -19.6 kNm	-11705 kN, 109.1 kNm	
	N, M _{max}	-4293 kN, 91.1 kNm	-11022 kN, -184.1 kNm	
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-5489 kN, -16.3 kNm	-11807 kN, 120.4 kNm	
	N, M _{max}	-4635 kN, 103.2 kNm	-11098 kN, -194.5 kNm	

Tab. G-3: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

G.5.4 Nachweise

Fig. G-67: Tragsicherheitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm

Fig. G-68: Gebrauchstauglichkeitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm

Anhang H Dokumentation der numerischen Ergebnisse der «erweiterten Analogie» für den Standort NL

H.1 Definition der Schnittebenen im Modell

H.1.1 Kontinuumsmodell HAA

Schnitt Position des		Richtung des Normalvektors der Schnittebene		
Schni	Schnitts	Х	У	Z
А	y = 50.0	0	1	0
1	x = -45.5	1	0	0

Fig. H-1: Definition der Schnittebenen HAA

H.1.2 Kontinuumsmodell SMA

Schnitt	Position des	Richtung des Normalvektors der Schnittebene		
	Schnitts	Х	У	Z
А	y = 126.0	0	1	0
3	x = 115.0	-1	0	0

Fig. H-2: Definition der Schnittebenen SMA

Querschnitte in Rot (Schnitt A): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1 und 3): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

H.2.1 Schnitt A: Betriebstunnel, 100 Jahre

Fig. H-3: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm

Fig. H-4: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm

H.2.2 Schnitt 1: Umladebereich, 50 Jahre

Fig. H-5: Tragsicherheitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. H-6: Gebrauchstauglichkeitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 50 cm

H.2.3 Schnitt 1: Umladebereich, 100 Jahre

Fig. H-7: Tragsicherheitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. H-8: Gebrauchstauglichkeitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 50 cm

H.3.1 Schnitt A: Betriebstunnel, 100 Jahre

Fig. H-9: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm

Fig. H-10: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 55 cm

H.3.2 Schnitt 3: Übernahmebereich, 25 Jahre

Fig. H-11: Tragsicherheitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. H-12: Gebrauchstauglichkeitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 50 cm

H.3.3 Schnitt 3: Übernahmebereich, 50 Jahre

Fig. H-13: Tragsicherheitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 55 cm

Fig. H-14: Gebrauchstauglichkeitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 55 cm

H.3.4 Schnitt 3: Übernahmebereich, 100 Jahre

Fig. H-15: Tragsicherheitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 65 cm

Fig. H-16: Gebrauchstauglichkeitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 65 cm

Anhang I Dokumentation der numerischen Ergebnisse des Berechnungsmodells HAA für den Standort ZNO

I.1 Definition der Schnittebenen im Modell

Schnitt	Position des Schnitts	Richtung des Normalvektors der Schnittebene		
		Х	У	Z
А	y = 50.0	0	1	0
В	y = 27.5	0	1	0
С	x = -45.5	1	0	0
D	x = -121.5	1	0	0

Fig. I-1: Definition der Schnittebenen HAA

Querschnitte in Rot (Schnitt A, B, C, D): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1, 2): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

I.2 Schnitt A

I.2.1 Spannungsverläufe

Fig. I-2: Porenwasserdruck entlang der Abfragelinie Parament

Fig. I-3: Porenwasserdruck entlang der Abfragelinie Firste

Fig. I-5: Spannung (σ 'xx) entlang der Abfragelinie Firste

Fig. I-6: Spannung (σ'yy) entlang der Abfragelinie Parament

Fig. I-7: Spannung (σ 'yy) entlang der Abfragelinie Firste

Fig. I-8: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. I-9: Spannung (σ 'zz) entlang der Abfragelinie Firste

I.2.2 Verformungen

Fig. I-10: Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit

Fig. I-11: Verformungen des Querschnitts A, Kurzzeit

Fig. I-12: Verformungen des Querschnitts A, 40 Jahre

Fig. I-13: Verformungen des Querschnitts A, 100 Jahre

I.2.3 Schnittgrössen

Fig. I-14: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. I-15: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. I-16: Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre

Fig. I-17: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. I-18: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 40 Jahre

Fig. I-19: Biegemoment (Mx), Schnitt A, 40 Jahre

Fig. I-20: Querkraft (Qy), Schnitt A, 40 Jahre

Fig. I-21: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. I-22: Biegemoment (Mx), Schnitt A, 100 Jahre

Fig. I-23: Querkraft (Qy), Schnitt A, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch				
Abfrageposition	Kombination	40 Jahre	100 Jahre	
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-5234.7 kN, 59.1 kNm	-5905.3 kN, 37.1 kNm	
	N, M _{max}	-5199.8 kN, 63.2 kNm	-5890.9 kN, 77.9 kNm	
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-5440.9 kN, -35.2 kNm	-6078.9 kN, -3.3 kNm	
	N, M _{max}	-4715.3 kN, 73.6 kNm	-5890.8 kN, 77.9 kNm	

Tab. I-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

I.2.4 Nachweise

Fig. I-24: Tragsicherheitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. I-25: Gebrauchstauglichkeitsnachweis, Schnitt A, 40 Jahre, Spritzbetonschale (C30/37): 45 cm

I.3 Schnitt B

Fig. I-26: Verformung, Schnitt B, D=10.8 m, Kurzzeit

Fig. I-27: Verformung, Schnitt B, D=10.8 m, 40 Jahre

Fig. I-28: Verformung, Schnitt B, D=10.8 m, 100 Jahre

I.4 Schnitt C

I.4.1 Spannungsverläufe

Fig. I-29: Porenwasserdruck entlang der Abfragelinie Parament

Fig. I-30: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. I-31: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. I-32: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. I-33: Verformungen des Querschnitts, Schnitt 1, Kurzzeit

Fig. I-34: Verformungen des Querschnitts, Schnitt 1, 40 Jahre

Fig. I-35: Verformungen des Querschnitts, Schnitt 1, 100 Jahre

I.4.3 Schnittgrössen

Fig. I-36: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. I-37: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. I-38: Normalkraft Ny (MN/m) in Umfangsrichtung, 40 Jahre

Fig. I-39: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. I-40: Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 40 Jahre

Fig. I-41: Biegemoment (Mx), Schnitt 1, 40 Jahre

Fig. I-42: Querkraft (Qy), Schnitt 1, 40 Jahre

Fig. I-43: Normalkraft (Ny) in Umfangsrichtung, Schnitt 1, 100 Jahre

Fig. I-44: Biegemoment (Mx), Schnitt 1, 100 Jahre

Fig. I-45: Querkraft (Qy), Schnitt 1, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	40 Jahre	100 Jahre		
Schnittkräfte im	N _{max} , M	-5212.4 kN, 36.4 kNm	-6006.3 kN, 28.2 kNm		
dargestellten Schnitt [*]	N, M _{max}	-4268.8 kN, 54.5 kNm	-4154.8 kN, 62.3 kNm		
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-5233.3 kN, 0.5 kNm	-6027.0 kN, 14.6 kNm		
	N, M _{max}	-5019.9 kN, 53.7 kNm	-5711.4 kN, 70.3 kNm		

Tab. I-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

I.4.4 Nachweise

Fig. I-46: Tragsicherheitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. I-47: Gebrauchstauglichkeitsnachweis, Schnitt 1, 40 Jahre, Spritzbetonschale (C30/37): 45 cm

I.5 Schnitt D

I.5.1 Spannungsverläufe

Fig. I-48: Porenwasserdruck entlang der Abfragelinie Parament

Fig. I-49: Spannung (o'xx) entlang der Abfragelinie Parament

Fig. I-50: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. I-51: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. I-52: Radialverschiebung vs. Ortsbrustposition, Lagerstollen, Schnitt 2

I.5.2

Verformungen

Fig. I-53: Verformungen des Querschnitts, Schnitt 2, Kurzzeit

Fig. I-54: Verformungen des Querschnitts, Schnitt 2, 4 Jahre

Fig. I-55: Verformungen des Querschnitts, Schnitt 2, 100 Jahre

I.5.3 Schnittgrössen

Fig. I-56: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. I-57: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. I-58: Normalkraft Ny (MN/m) in Umfangsrichtung, 4 Jahre

Fig. I-59: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. I-60: Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, Kurzzeit

Fig. I-61: Biegemoment (Mx), Schnitt 2, Kurzzeit

Fig. I-62: Querkraft (Qy), Schnitt 2, Kurzzeit

Fig. I-63: Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 4 Jahre

Fig. I-64: Biegemoment (Mx), Schnitt 2, 4 Jahre

Fig. I-65: Querkraft (Qy), Schnitt 2, 4 Jahre

Fig. I-66: Normalkraft (Ny) in Umfangsrichtung, Schnitt 2, 100 Jahre

Fig. I-67: Biegemoment (Mx), Schnitt 2, 100 Jahre

Fig. I-68: Querkraft (Qy), Schnitt 2, 100 Jahre

Tab. I-3: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	4 Jahre	100 Jahre		
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-4623.8 kN, 3.9 kNm	-5806.3 kN, -57.5 kNm		
	N, $ M _{max}$	-3685.7 kN, 23.1 kNm	-3395.2 kN, 82.4 kNm		
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M	-5441.6 kN, 4.4 kNm	-6663.0 kN, -57.6 kNm		
	N, M _{max}	-5122.7 kN, 26.4 kNm	-5844.4 kN, 64.2 kNm		

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

 2 - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (1 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

I.5.4 Nachweise

I.5.4.1 Nachweise im Schnitt 2 – 4 Jahre

Fig. I-69: Tragsicherheitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 35 cm

Fig. I-70: Gebrauchstauglichkeitsnachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 35 cm

GEOMETRI	E		-400.00	-200.00	3.00	200.00	400.00
Länge Tübbing	[mm]	1000	-400.00	-200.00	0.00	200.00	400.00
Breite Tübbing	[mm]	350					
Randabstand, bergseitig	[mm]	50		2000	0.00		
Randabstand, hohlraumseitig	[mm]	50		-2000	5.00		
Länge Führunsstab	[mm]			1			
Breite Führungsstab	[mm]						
Exzentrizität der Fuge e0	[mm]	0		-400(0.00		
Breite, Fuge	[mm]	250			5.00		
Länge, Fuge	[mm]	900					
Fläche, gesamt, Fuge	[mm²]	222500					
Versatz, hohlraumseitig (+)	[mm]	0		-6000	0.00	/	
SCHNITTKRÄ	FTE					1	
Normalkraft Nd	[kN]	-7346			4	1	
Biegemoment Md	[kNm]	-6		-800	2.00		
Querkraft Qd	[kN]	0			$\backslash /$		
MATERIALKENNWERTE UN	D SICHER	HEITEN			Ť		
eta_fc	[-]	0.79		-10000	0.00		
gamma_c	[-]	1.50					
fck	[MN/m²]	60.0					
fcd	[MN/m²]	31.6					
NACHWEISFÜHF	RUNG						
Fugenmoment	[kNm]	-6					
Exzentrizität der Fugenkräfte	[mm]	1					
Breite des Kontakts	[mm]	248					
Fläche des Kontakts	[mm²]	225000					
Kontaktlage	[-]	raumseitig					•
Randabbstand, hohlraumseitig	[mm]	50	Sc	hnittkräfte r	nach 4 Jahr	en:	ļ
Randabstand, bergseitig	[mm]	52		N [kN]	M [kNm]	FoS	
Maßgeblicher Randabstand	[mm]	50	N _{max}	-7346.1	-6.0	1.208	
Fläche der Lastausbreitung	[mm²]	348366	M _{max} +	-4975.7	31.2	1.796	
Lasterhöhung	[-]	1.25	M _{max} -	-6915.6	-35.7	1.290	
Aufnehmbare Spannung	[MN/m²]	39.4	(M/N) _{max} +	-6153.5	-34.0	1.451	
Kontaktspannung	[MN/m²]	32.6	(M/N) _{max} -	-4975.7	31.2	1.796	
32.6	; <	39.4		NACHWEIS	ERBRACHT		1.20

Fig. I-71: Längsfugennachweis, Schnitt 2, 4 Jahre, Tübbing (C60/75): 35 cm

I.5.4.2 Nachweise im Schnitt 2 – 75 Jahre

Der Nachweis wird mit einem Sicherheitsfaktor von SF = 1.0 geführt. Schnittkräfte infolge einer zusätzlichen thermischen Belastung von 11.0 MPa werden in Rot dargestellt.

Fig. I-72: Tragsicherheitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 35 cm

Fig. I-73: Gebrauchstauglichkeitsnachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 35 cm

Fig. I-74: Längsfugennachweis, Schnitt 2, 75 Jahre, SF=1, Tübbing (C60/75): 35 cm

Anhang J Dokumentation der numerischen Ergebnisse des Berechnungsmodells SMA für den Standort ZNO

J.1 Definition der Schnittebenen im Mode	J.1	Definition	der Schnitt	ebenen im	Modell
---	-----	------------	-------------	-----------	--------

Schnitt	Position des	Richtung des Normalvektors der Schnittebene		
	Schnitts	Х	У	Z
А	y = 126	0	1	0
В	y = 173	0	1	0
С	x = 60	-1	0	0
D	x = 250	-1	0	0

Fig. J-1: Definition der Schnittebenen SMA

Querschnitte in Rot (Schnitt A, B, C, D): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1, 2): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

J.2 Schnitt A

Fig. J-2: Porenwasserdruck entlang der Abfragelinie Parament

Fig. J-3: Porenwasserdruck entlang der Abfragelinie Firste

Fig. J-4: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. J-5: Spannung (σ 'xx) entlang der Abfragelinie Firste

Fig. J-6: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. J-7: Spannung (σ 'yy) entlang der Abfragelinie Firste

Fig. J-8: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. J-9: Spannung (σ 'zz) entlang der Abfragelinie Firste

J.2.2 Verformungen

Fig. J-10: Radialverschiebung vs. Ortsbrustposition, Schnitt A, Kurzzeit

Fig. J-11: Verformung des Querschnitts A, Kurzzeit

Fig. J-12: Verformung des Querschnitts A, 50 Jahre

Fig. J-13: Verformung des Querschnitts A, 100 Jahre

J.2.3 Schnittgrössen

Fig. J-14: Lokales Koordinatensystem der Liner-Elemente, x: rot, y: grün, z: blau

Fig. J-15: Normalkraft Ny (MN/m) in Umfangsrichtung, Kurzzeit

Fig. J-16: Normalkraft Ny (MN/m) in Umfangsrichtung, 50 Jahre

Fig. J-17: Normalkraft Ny (MN/m) in Umfangsrichtung, 100 Jahre

Fig. J-18: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. J-19: Biegemoment (Mx), Schnitt A, 50 Jahre

Fig. J-20: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. J-21: Normalkraft (Ny) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. J-22: Biegemoment (Mx), Schnitt A, 100 Jahre

Fig. J-23: Querkraft (Qy), Schnitt A, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	50 Jahre	100 Jahre		
Schnittkräfte im	N _{max} , M	-6101 kN, -7.0 kNm	-6460 kN, -14.3 kNm		
dargestellten Schnitt ¹	N, M _{max}	-4820 kN, -35.4 kNm	-5059 kN, -41.4 kNm		
Bemessungsrelevante	N _{max} , M	-6205 kN, -1.64 kNm	-6554 kN, -14.4 kNm		
Schnittkräfte (gesamter Abschlag) ²	N, $ M _{max}$	-4808 kN, -37.4 kNm	-5052 kN, -43.2 kNm		

Tab. J-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

J.2.4 Nachweise

Fig. J-24: Tragsicherheitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. J-25: Gebrauchstauglichkeitsnachweis, Schnitt A, 50 Jahre, Spritzbetonschale (C30/37): 45 cm

J.3 Schnitt B

J.3.1 Verformungen

Fig. J-26: Verformung, Schnitt B, D=12.3 m, Kurzzeit

Fig. J-27: Verformung, Schnitt B, D=12.3 m, 50 Jahre

Fig. J-28: Verformung, Schnitt B, D=12.3 m, 100 Jahre

J.4 Schnitt C

J.4.1 Spannungsverläufe

Fig. J-29: Porenwasserdruck entlang der Abfragelinie Parament

Fig. J-30: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. J-31: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. J-32: Spannung (σ 'zz) entlang der Abfragelinie Parament

Fig. J-33: Radialverschiebung vs. Ortsbrustposition, Schnitt 1, Kurzzeit

Fig. J-34: Verformung des Querschnitts 1, Kurzzeit

Fig. J-35: Verformung des Querschnitts 1, 25 Jahre

Fig. J-36: Verformung des Querschnitts 1, 100 Jahre

J.4.3 Schnittgrössen

Fig. J-37: Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau

Fig. J-38: Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit

Fig. J-39: Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre

Fig. J-40: Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre

Fig. J-41: Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 25 Jahre

Fig. J-42: Biegemoment (My), Schnitt 1, 25 Jahre

Fig. J-43: Querkraft (Qx), Schnitt 1, 25 Jahre

Fig. J-44: Normalkraft (Nx) in Umfangsrichtung, Schnitt 1, 100 Jahre

Fig. J-45: Biegemoment (My), Schnitt 1, 100 Jahre

Fig. J-46: Querkraft (Qx), Schnitt 1, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch						
Abfrageposition	Kombination	25 Jahre	100 Jahre			
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M	-5496 kN, 22.8 kNm	-6581 kN, -2.1 kNm			
	N, M _{max}	-5349 kN, -36.3 kNm	-4674 kN, -28.5 kNm			
Bemessungsrelevante	N _{max} , M	-5553 kN, 19.5 kNm	-6666 kN, -5.3 kNm			
Schnittkräfte (gesamter Abschlag) ²	N, M _{max}	- 4327 kN, -43.3 kNm	-3555 kN, 40.4 kNm			

Tab. J-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 1

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

J.4.4 Nachweise

Fig. J-47: Tragsicherheitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. J-48: Gebrauchstauglichkeitsnachweis, Schnitt 1, 25 Jahre, Spritzbetonschale (C30/37): 45 cm

J.5 Schnitt D

J.5.1 Spannungsverläufe

Fig. J-49: Porenwasserdruck entlang der Abfragelinie Parament

Fig. J-50: Spannung (σ 'xx) entlang der Abfragelinie Parament

Fig. J-51: Spannung (σ 'yy) entlang der Abfragelinie Parament

Fig. J-52: Spannung (σ 'zz) entlang der Abfragelinie Parament

J.5.2 Verformungen

Fig. J-53: Radialverschiebung vs. Ortsbrustposition, Schnitt 2, Kurzzeit

Fig. J-54: Verformung des Querschnitts 2, Kurzzeit

Fig. J-55: Verformung des Querschnitts 2, 25 Jahre

Fig. J-56: Verformung des Querschnitts 2, 100 Jahre

J.5.3 Schnittgrössen

Fig. J-57: Lokales Koordinatensystem der Linerelemente, x: rot, y: grün, z: blau

Fig. J-58: Normalkraft Nx (MN/m) in Umfangsrichtung, Kurzzeit

Fig. J-59: Normalkraft Nx (MN/m) in Umfangsrichtung, 25 Jahre

Fig. J-60: Normalkraft Nx (MN/m) in Umfangsrichtung, 100 Jahre

Fig. J-61: Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 25 Jahre

Fig. J-62: Biegemoment (My), Schnitt 2, 25 Jahre

Fig. J-63: Querkraft (Qx), Schnitt 2, 25 Jahre

Fig. J-64: Normalkraft (Nx) in Umfangsrichtung, Schnitt 2, 100 Jahre

Fig. J-65: Biegemoment (My), Schnitt 2, 100 Jahre

Fig. J-66: Querkraft (Qx), Schnitt 2, 100 Jahre

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch						
Abfrageposition	Kombinatio n	25 Jahre	100 Jahre			
Schnittkräfte im dargestellten Schnitt ¹	N _{max} , M N, M _{max}	-5064 kN, -20.8 kNm -4855 kN, 98.8 kNm	-10607 kN, 153.3 kNm -9556 kN,-167.5 kNm			
Bemessungsrelevante Schnittkräfte (gesamter Abschlag) ²	N _{max} , M N, M _{max}	-5116 kN, -46.0 kNm -5007 kN, 112.4 kNm	-10713 kN, 160.9kNm -9014 kN, -178.0 kNm			

Tab. J-3: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt 2

¹ - Die dargestellten Schnittkräfte wurden aus den Schalenelementen an der genauen Schnittposition ausgewertet.

² - Die dargestellten Schnittkräfte wurden für sämtliche Schalenelemente, welche einem Abschlag (3.0 m lang) an der Schnittposition zuzuordnen sind, ausgewertet.

J.5.4 Nachweise

Fig. J-67: Tragsicherheitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm

Fig. J-68: Gebrauchstauglichkeitsnachweis, Schnitt 2, 25 Jahre, Spritzbetonschale (C30/37): 40 cm

Anhang K Dokumentation der numerischen Ergebnisse der «erweiterten Analogie» für den Standort ZNO

K.1 Definition der Schnittebenen im Modell

K.1.1 Kontinuumsmodell HAA

Schnitt	Position des	Richtung des Normalvektors der Schnittebene		
	Schnitts	Х	У	Z
А	y = 50.0	0	1	0
1	x = -45.5	1	0	0

Fig. K-1: Definition der Schnittebenen HAA

K.1.2 Kontinuumsmodell SMA

Schnitt	Position des	Richtung des Normalvektors der Schnittebene		
	Schnitts	Х	у	Z
А	y = 126.0	0	1	0
3	x = 115.0	-1	0	0

</a

SCHNITT 3

y/a

Fig. K-2: Definition der Schnittebenen SMA

SCHNITT A

Querschnitte in Rot (Schnitt A): Die Auswertung und Darstellung der Ergebnisse (Spannungen, Porenwasserdruck) erfolgt über die gesamte Länge des schematisch dargestellten Schnittes.

Querschnitte in Blau (Schnitt 1 und 3): Die Darstellung der Ergebnisse (Schnittkräfte und Verschiebungen des Ausbruchsrandes) bezieht sich ausschliesslich auf den Tunnelquerschnitt.

K.2.1 Schnitt A: Betriebstunnel, 100 Jahre

Fig. K-3: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. K-4: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm

K.2.2 Schnitt 1: Umladebereich, 50 Jahre

Fig. K-5: Tragsicherheitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. K-6: Gebrauchstauglichkeitsnachweis, Schnitt 1, 50 Jahre, Spritzbetonschale (C30/37): 45 cm

K.2.3 Schnitt 1: Umladebereich, 100 Jahre

Fig. K-7: Tragsicherheitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. K-8: Gebrauchstauglichkeitsnachweis, Schnitt 1, 100 Jahre, Spritzbetonschale (C30/37): 45 cm

K.3.1 Schnitt A: Betriebstunnel, 100 Jahre

Fig. K-9: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. K-10: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Spritzbetonschale (C30/37): 45 cm

K.3.2 Schnitt 3: Übernahmebereich, 25 Jahre

Fig. K-11: Tragsicherheitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 45 cm

Fig. K-12: Gebrauchstauglichkeitsnachweis, Schnitt 3, 25 Jahre, Spritzbetonschale (C30/37): 45 cm

K.3.3 Schnitt 3: Übernahmebereich, 50 Jahre

Fig. K-13: Tragsicherheitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 50 cm

Fig. K-14: Gebrauchstauglichkeitsnachweis, Schnitt 3, 50 Jahre, Spritzbetonschale (C30/37): 50 cm

K.3.4 Schnitt 3: Übernahmebereich, 100 Jahre

Fig. K-15: Tragsicherheitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 55 cm

Fig. K-16: Gebrauchstauglichkeitsnachweis, Schnitt 3, 100 Jahre, Spritzbetonschale (C30/37): 55 cm

Anhang L Dokumentation der numerischen Ergebnisse des Lüftungsschachtes für den Standort JO

L.1 Definition der Schnittebenen im Modell

Das 2D-Kontinuumsmodell für die Schachtbauwerke ist ein rotationssymmetrisches Modell. Aus diesem Grund gibt es nur eine Schnittebene. Dieser Schnitt wird im nachfolgenden Dokument als Schnitt A bezeichnet.
Lüftungsschacht L.2

Spannungsverläufe L.2.1

Fig. L-2: Spannung (σ 'xx) entlang der Abfragelinie

Fig. L-3: Spannung (σ 'yy) entlang der Abfragelinie

Fig. L-4: Spannung (σ 'zz) entlang der Abfragelinie

Verformungen L.2.2

Fig. L-5: Verformungen am Schnitt A, Kurzzeit

Fig. L-6: Verformungen am Schnitt A, 50 Jahre

Fig. L-7: Verformungen am Schnitt A, 100 Jahre

Fig. L-8: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit

Fig. L-9: Biegemoment (Mz), Schnitt A, Kurzzeit

Fig. L-10: Querkraft (Qy), Schnitt A, Kurzzeit

Fig. L-11: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. L-12: Biegemoment (Mz), Schnitt A, 50 Jahre

Fig. L-13: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. L-14: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. L-15: Biegemoment (Mz), Schnitt A, 100 Jahre

Fig. L-16: Querkraft (Qy), Schnitt A, 100 Jahre

г

Tab. L-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	Kurzzeit	100 Jahre		
Bemessungsrelevante Schnittkräfte	N _{max} , M	-3813.5kN, -2.9 kNm	-5277.6 kN, -7.6 kNm		
	N, $ M _{max}$	-3741.2 kN, 22.3 kNm	-5201.6 kN, 32.5 kNm		

L.2.4 Nachweise

Die Schnittkräfte im Tragsicherheitsnachweis wurden im Modell an einem 40 cm starken Ausbau berechnet.

L-11

Fig. L-17: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 40 cm

Fig. L-18: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 40 cm

Anhang M Dokumentation der numerischen Ergebnisse des Betriebs- und Lüftungsschachtes für den Standort NL

M.1 Definition der Schnittebenen im Modell

Das 2D-Kontinuumsmodell für die Schachtbauwerke ist ein rotationssymmetrisches Modell. Aus diesem Grund gibt es nur eine Schnittebene. Dieser Schnitt wird im nachfolgenden Dokument als Schnitt A bezeichnet.

M.2 Betriebsschacht

M.2.1 Spannungsverläufe

Fig. M-1: Porenwasserdruck entlang der Abfragelinie

Fig. M-2: Spannung (σ 'xx) entlang der Abfragelinie

Fig. M-3: Spannung (σ 'yy) entlang der Abfragelinie

Fig. M-4: Spannung (σ 'zz) entlang der Abfragelinie

M.2.2 Verformungen

Fig. M-5: Verformungen am Schnitt A, Kurzzeit

Fig. M-6: Verformungen am Schnitt A, 50 Jahre

Fig. M-7: Verformungen am Schnitt A, 100 Jahre

M.2.3

Fig. M-8: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit

Fig. M-9: Biegemoment (Mz), Schnitt A, Kurzzeit

Fig. M-10: Querkraft (Qy), Schnitt A, Kurzzeit

Fig. M-11: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. M-12: Biegemoment (Mz), Schnitt A, 50 Jahre

Fig. M-13: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. M-14: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. M-15: Biegemoment (Mz), Schnitt A, 100 Jahre

Fig. M-16: Querkraft (Qy), Schnitt A, 100 Jahre

Tab. M-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	Kurzzeit	100 Jahre		
Bemessungsrelevante Schnittkräfte	N _{max} , M	-8832.5 kN, -33.7 kNm	-16369.8 kN, -45.2 kNm		
	N, $ M _{max}$	-8712.2 kN, 122.4 kNm	-16126.7 kN, 255.9 kNm		

M.2.4 Nachweise

Die Schnittkräfte im Tragsicherheitsnachweis wurden im Modell an einem 120 cm starken Ausbau berechnet.

M-11

Fig. M-17: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 120 cm

Fig. M-18: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 120 cm

M.3 Lüftungsschacht

M.3.1 Spannungsverläufe

Fig. M-19: Porenwasserdruck entlang der Abfragelinie

Fig. M-20: Spannung (σ 'xx) entlang der Abfragelinie

Fig. M-21: Spannung (σ 'yy) entlang der Abfragelinie

Fig. M-22: Spannung (σ 'zz) entlang der Abfragelinie

Verformungen M.3.2

Fig. M-23: Verformungen am Schnitt A, Kurzzeit

Fig. M-24: Verformungen am Schnitt A, 50 Jahre

Fig. M-25: Verformungen am Schnitt A, 100 Jahre

M.3.3 Schnittgrössen

Fig. M-26: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit

Fig. M-27: Biegemoment (Mz), Schnitt A, Kurzzeit

Fig. M-28: Querkraft (Qy), Schnitt A, Kurzzeit

Fig. M-29: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. M-30: Biegemoment (Mz), Schnitt A, 50 Jahre

Fig. M-31: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. M-32: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. M-33: Biegemoment (Mz), Schnitt A, 100 Jahre

Fig. M-34: Querkraft (Qy), Schnitt A, 100 Jahre

Tab. M-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch					
Abfrageposition	Kombination	Kurzzeit	100 Jahre		
Bemessungsrelevante Schnittkräfte	N _{max} , M	-5497.3 kN, -16.9 kNm	-10587.9 kN, -40.4 kNm		
	N, M _{max}	-5457.6 kN, 43.0 kNm	-10441.9 kN, 91.4 kNm		

M.3.4 Nachweise

Die Schnittkräfte im Tragsicherheitsnachweis wurden im Modell an einem **80 cm** starken Ausbau berechnet.

Fig. M-35: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 80 cm

Fig. M-36: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 80 cm

Anhang NDokumentation der numerischen Ergebnisse des
Betriebs- und Lüftungsschachtes für den Standort ZNO

N.1 Definition der Schnittebenen im Modell

Das 2D-Kontinuumsmodell für die Schachtbauwerke ist ein rotationssymmetrisches Modell. Aus diesem Grund gibt es nur eine Schnittebene. Dieser Schnitt wird im nachfolgenden Dokument als Schnitt A bezeichnet.

N.2 Betriebsschacht

N.2.1 Spannungsverläufe

Fig. N-1: Porenwasserdruck entlang der Abfragelinie

Fig. N-2: Spannung (σ 'xx) entlang der Abfragelinie

Fig. N-3: Spannung (σ 'yy) entlang der Abfragelinie

Fig. N-4: Spannung (σ 'zz) entlang der Abfragelinie
Verformungen N.2.2

Fig. N-5: Verformungen am Schnitt A, Kurzzeit

Fig. N-6: Verformungen am Schnitt A, 50 Jahre

Fig. N-7: Verformungen am Schnitt A, 100 Jahre

N.2.3 Schnittgrössen

Fig. N-8: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit

Fig. N-9: Biegemoment (Mz), Schnitt A, Kurzzeit

Fig. N-10: Querkraft (Qy), Schnitt A, Kurzzeit

Fig. N-11: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. N-12: Biegemoment (Mz), Schnitt A, 50 Jahre

Fig. N-13: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. N-14: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. N-15: Biegemoment (Mz), Schnitt A, 100 Jahre

Fig. N-16: Querkraft (Qy), Schnitt A, 100 Jahre

Tab. N-1: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch				
Abfrageposition	Kombination	Kurzzeit	100 Jahre	
Bemessungsrelevante Schnittkräfte	N _{max} , M	-7744.7 kN, -15.4 kNm	-12311.6 kN, -85.9 kNm	
	N, $ M _{max}$	-7548.5 kN, 102.0 kNm	-12120.7 kN, 163.0 kNm	

N.2.4 Nachweise

Die Schnittkräfte im Tragsicherheitsnachweis wurden im Modell an einem 100 cm starken Ausbau berechnet.

N-11

Fig. N-17: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 100 cm

Fig. N-18: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 100 cm

N.3 Lüftungsschacht ZNO

N.3.1 Spannungsverläufe

Fig. N-19: Porenwasserdruck entlang der Abfragelinie

Fig. N-20: Spannung (o'xx) entlang der Abfragelinie

Fig. N-21: Spannung (σ 'yy) entlang der Abfragelinie

Fig. N-22: Spannung (σ 'zz) entlang der Abfragelinie

N.3.2 Verformungen

Fig. N-23: Verformungen am Schnitt A, Kurzzeit

Fig. N-24: Verformungen am Schnitt A, 50 Jahre

Fig. N-25: Verformungen am Schnitt A, 100 Jahre

N.3.3 Schnittgrössen

Fig. N-26: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, Kurzzeit

Fig. N-27: Biegemoment (Mz), Schnitt A, Kurzzeit

Fig. N-28: Querkraft (Qy), Schnitt A, Kurzzeit

Fig. N-29: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 50 Jahre

Fig. N-30: Biegemoment (Mz), Schnitt A, 50 Jahre

Fig. N-31: Querkraft (Qy), Schnitt A, 50 Jahre

Fig. N-32: Normalkraft (Nx) in Umfangsrichtung, Schnitt A, 100 Jahre

Fig. N-33: Biegemoment (Mz), Schnitt A, 100 Jahre

Fig. N-34: Querkraft (Qy), Schnitt A, 100 Jahre

Tab. N-2: Übersicht der bemessungsrelevanten Schnittkräfte, Schnitt A

Übersicht der bemessungsrelevanten Schnittkräfte, charakteristisch				
Abfrageposition	Kombination	Kurzzeit	100 Jahre	
Bemessungsrelevante Schnittkräfte	N _{max} , M	-6090.0 kN, -18.4 kNm	-9081.8 kN, -13.6 kNm	
	N, M _{max}	-5984.8 kN, 76.3 kNm	-8960.1 kN, 75.6 kNm	

N.3.4 Nachweise

Die Schnittkräfte im Tragsicherheitsnachweis wurden im Modell an einem 65 cm starken Ausbau berechnet.

Fig. N-35: Tragsicherheitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 65 cm

Fig. N-36: Gebrauchstauglichkeitsnachweis, Schnitt A, 100 Jahre, Betonschale (C30/37): 65 cm