Geology of Switzerland


Switzerland boasts an interesting geology and a large variety of landscape features – from the crescent-shaped Alpine region to the Swiss Plateau and further to the Jura Mountains. Learn more about the formation of present-day Switzerland.

Did you know that parts of Switzerland were once covered by an ancient sea? Find more information on this and other aspects of Switzerland’s evolutionary history and geology on this page. Find out what the ground beneath the surface looks like on a visit to an underground rock laboratory such as the Mont Terri Rock Laboratory, where Nagra and its research partners investigate the Opalinus Clay host rock.

Overview of Switzerland’s geological evolution

Marine sediments, the folding of the Alps and the Jura Mountains, the erosion of mountains as well as glaciation have all shaped the way Switzerland looks. This map shows the geological features and the distribution of the various rock types found at the surface.

In simplified terms, Switzerland can be divided into four distinct units:

  1. Folded and Tabular Jura in the north and north-west consisting of limestones, marls (composite rock consisting of limestone and clay), clays and anhydrite/gypsum
  2. Swiss Plateau and the Molasse Basin, filled with mountain deposits consisting of sandstones, nagelfluh, silt and marls
  3. Northern Alps, including the Helvetic Zone, consisting primarily of marl-rich sediments that were deposited during the Mesozoic Period
  4. Central and Southern Alps with the Crystalline Zone, consisting primarily of granites and gneisses that crystallised through the solidification of magma in the earth’s interior.
Simplified geological map of Switzerland; a more detailed profile view along the line shown in this map is presented below. Source: Nagra
Geological profile of Switzerland from north-north-west to south-south-east (numerals explained in text below). Source: Nagra NTB 14- 02, Dossier III (greatly simplified).

Troughs form in the basement

Deep crystalline plutonic, metamorphic and dyke rocks [1] formed in the earth’s crust and constitute the crystalline basement. This was formed over hundreds of millions of years by orogenic processes. During the Carboniferous and Permian Periods over 250 million years ago (see geological time scales), troughs [2] formed in the the crystalline basement. These were subsequently filled with eroded material from the surrounding mountains. The remains of one such Permo-Carboniferous Trough are located in Northern Switzerland between Frick and Konstanz.

The Jurassic Sea covers Switzerland

During most of the Jurassic Period, Switzerland was covered by a sea. Sedimentary rocks that now cover the old bedrock [3] were originally deposited on the ocean floor as sediments, where they gradually solidified. The Alps were formed by the collision of the Adriatic and the Eurasian tectonic plates during the Late Cretaceous and Tertiary Periods. During a comparatively late phase in the formation of the Alps, the rocks of the Helvetic sedimentary zone were broken down into rock stacks, folded and transported northwards [4]. Situated between these stacks is eroded material that had previously been deposited in the sea during the formation of the Alps [Flysch 5]. Further eroded material generated by the uplifting Alps, the so-called molasse, accumulated in the Molasse Basin [7] located in the northern flank of the Alps.

The formation of the Alps led to the folding of the Jura Mountains

The pressure from the emerging Alps extended into Northern Switzerland: sedimentary rocks were detached from the crystalline bedrock, thus creating the Folded Jura [6].

Video of a presentation by Professor Emeritus Adrian Pfiffner on the geology of Switzerland. “Geologische Rosinen im Welterbe Sardona”, Source: YouTube, UNESCO-World Heritage Sardona (in German)

Excerpts from the geological timescale

(in millions of years)

Carboniferous: -358,9 to -298,9
Permian: -298,9 to -252,2
Triassic: -252,2 to -201,3
Jurassic: -201,3 to -145
Cretaceous: -145 to -66
Tertiary (Palaeogene & Neogene): -66 to -2,588
Quaternary: -2,588 to 0

geological history

1. Folded Jura and Tabular Jura

Both the Folded and the Tabular Jura mainly consist of limestone, marl and clay rocks, as well as anhydrite and gypsum. The Tabular Jura, which extends from north-western Switzerland to the region of Schaffhausen, forms a so-called cuesta landscape due to the varying erodibility of these rock types. Erodibility describes the susceptibility or resistance of a rock to erosion.

In north-western Switzerland in particular, fault zones extending from north to south further divide these cuestas into blocks. This typical surface structure of the Tabular Jura with higher areas and valleys is known as fault-block mountains. These mountains were formed along with the Rhine Graben around 40 million years ago during the Cenozoic Period. Fault zones are fractures in the rock formations with a displacement of the individual rock areas relative to one another ranging from several centimetres up to kilometres.

The Folded Jura describes an arc extending from the Geneva region and neighbouring France in the west to the Swiss town of Baden in the east. In the Folded Jura, the sedimentary rocks were compressed and folded due to the Alpine orogeny. A classic example is provided by the massive limestone deposits at the Creux du Van (Canton Neuchâtel). The Folded Jura is only occasionally breached by narrow transverse valleys or gorges. Roads often follow these gorges, or require a tunnel or a mountain pass.

2. Swiss Plateau with the Molasse Basin

The Swiss Plateau lies between the Jura Mountains in the north and the Alps in the south and extends from Lake Constance to Lake Geneva. It is characterised by distinctive river courses and lakes.

The crystalline basement is located deep below the Swiss Plateau. It is covered by sedimentary sequences from the Mesozoic Period (particularly marine sediments such as limestones and clays). The so-called Molasse Basin, consisting of eroded material (rock fragments, sand, silt and clays) from the developing Alps, is located above. In the final phase of the alpine orogeny, the earth’s crust sank under the weight of the mountains and a depression was formed in the alpine foreland. For about 30 million years, this depression was continuously filled with eroded material that rivers transported northwards from the Alps – thus forming the Molasse Basin.

Marine and Freshwater Molasse contain fossils

Eroded material from the Alps was deposited in lakes and river valleys; as a result, there are two types of molasse: Marine and Freshwater. The sediments were deposited according to grain size: finer particles such as clay platelets were transported far into the sea, as far as the edge of today’s Jura Mountains. Coarser particles could not remain suspended in the rivers for as long and settled in the rivers closer to the Alps, for example as gravel beds.

Marine Molasse is fine-grained and consists primarily of marl, sandstone, silt and clay. Freshwater Molasse has coarser-grained components such as nagelfluh and sandstone. Various layers are rich in fossils: Freshwater Molasse contains leaves, freshwater snails and mussels; Marine Molasse contains sea snails and mussels as well as shark teeth.

History of the Marine and Freshwater Molasse

Seawater entered the depression that was formed in the Swiss Plateau during the final phase of the alpine orogeny. Sediments such as marl and sandstones that were deposited there around 35 to 30 million years ago belong to the Lower Marine Molasse.

Due to the increased rate of uplift of the Alps around 30 million years ago, larger amounts of eroded material were carried to the Molasse Basin. As a result, the sea soon became land again. The sediments that were deposited primarily in river beds 30 to 20 million years ago belong to the Lower Freshwater Molasse. Coarser-grained components were deposited as nagelfluh. In a later phase of the alpine folding, the molasse rocks located close to the Alps were compressed, moved and uplifted from the Molasse Basin (forming, for example, the Rigi Mountain).

When the sea level rose about 20 million years ago, the Swiss Plateau was again flooded by the sea. In this narrow, shallow sea, sediments from the Upper Marine Molasse, such as sandstone and marl, were deposited between around 20 and 18 million years ago. At the same time, deltas and alluvial fans were formed.

The sea retreated again between 18 and 14 million years ago, forming many lakes and rivers in the Swiss Plateau as well as large alluvial fans at the Hörnli and Napf with a lot of gravel, and extensive floodplains with sand, silt and mud. These sediments of the Upper Freshwater Molasse were compressed into conglomerates such as nagelfluh, sandstones and marls.

Landscape of the Zürcher Weinland with a view of the Molasse Basin to the Alps on the horizon. Photo: Nagra

Ice ages shaped the Swiss Plateau

Unconsolidated rocks (gravel, scree, sand, silt, clay) from the ice ages of the last two million years were transported by rivers and glaciers and overlie the Molasse today. Glaciers and meltwater have a large erosive force and have been significantly shaping the present-day topography of the Swiss Plateau. This is apparent in the many elongated lakes running from south-south-east to north-north-west along the Alpine fringe, whose bedrock frequently lies beneath thick layers of unconsolidated rocks. These glacial unconsolidated rocks do not provide solid ground and make construction difficult, but they provide resources in the form of gravel and drinking water. Occasionally, mammoth teeth are found in these glacial unconsolidated rocks.

3. Northern Alps with the Helvetic Zone

The Swiss Alps can be divided into the Northern, Central and Southern Alps. The entire alpine range, however, can also be categorised in other ways. The so-called Helvetic Zone forms the northern margin of the Alps from Lake Thun to the Rhine valley. It consists of limestone- and marl-rich sediments that were deposited in a shallow sea (Tethys Ocean) in the period from 250 to 65 million years ago.

Whole mountains shifted to the north

The pressure created by the alpine orogeny deformed the rocks in the region of the alpine belt. Many of the sediments from the Tethys Ocean are no longer located where they were initially deposited. During a late phase of the alpine orogeny, Helvetic sediments, for example, were detached from the crystalline bedrock, folded and transported up to 50 kilometres to the north-west due to pressure from the African continental plate advancing from the south. Today, they are visible in the form of thick stacks of nappes. The soft layers of marl and slate contained in blocks of rock served as a lubricant. The Säntis, Titlis and Churfirsten are examples of Helvetic nappes.

The Churfirsten is an imposing example of the nappes of the Helvetic Zone. Photo: © swisseduc / Dr. Jürg Alean
© swisseduc / Dr. Jürg Alean

4. Central and Southern Alps with the Crystalline Zone

The Swiss Alps form the central part of the entire Alpine range that extends from Mediterranean Nice all the way to Vienna. Aside from sedimentary rocks, the high peaks and glaciers typical of the Central Alps also contain crystalline and metamorphic rocks. Many peaks are still pointed and sharp-edged because they were spared during the Ice Ages, when ice neither covered nor eroded them.

Africa and Europe collide

From a geological point of view, the Alps are where Africa and Europe collide. The African plate has been moving northwards over the last 130 million years and is pushing against the Eurasian continent. The Alps began forming at the end of the Cretaceous Period around 80 million years ago as a result of the collision of the African and European plates. This process reached its apex about 30 million years ago. Due to the thrust from the south and the compression of the rock masses, these rocks shifted not only upwards but also downwards. The thickness of the continental crust increased to far more than 50 kilometres.

Alps are like a floating iceberg

The Alps primarily consist of continental crust, which has a lower density than that of the underlying mantle. Due to the thickening that occurred during the alpine orogeny, the continental crust in the alpine region is thicker than in the foreland. The situation can be compared to an iceberg floating on water. Ice has a lower density than water. When the tip of an iceberg melts, it rises from the water until equilibrium has been restored.

The Alps are also losing mass due to weathering and erosion. The Alps were only just forming when material was already being eroded by processes involving gravity, flowing water or wind. This material was deposited in the Swiss Plateau as molasse. This redistribution of sediments was intensified during glaciations that took place in more recent history.

Earthquakes caused by uplift of the Alps

The area around Brig and Chur is uplifting by up to 1.5 millimetres per year. Earthquakes occur more frequently in this area. The continuous uplift and deformation, as well as the associated erosion, are important factors ruling out the Alpine region as a suitable location for a high-level waste repository.

Granite landscape in Central Switzerland. The dome in the centre of the picture was rounded by the action of glacier ice, while the peaks in the background have retained their sharp edges. Photo: Nagra

Central massifs with crystalline basement

The crystalline basement in the Central Alps is visible at the surface. Central massifs, such as the Aar, Gotthard or Mont Blanc Massifs in the south-west of Switzerland, consist mainly of granitic rocks and gneisses. The pressure created by the alpine orogeny strongly deformed the rocks along the alpine belt. Both the Aar and the Gotthard Massifs were compressed, but they were not moved away from their place of origin. These massifs are surrounded by sediments that were overprinted metamorphically.

Nagra and its research partners study radioactive waste disposal at the Grimsel Test Site. This laboratory is located in the granitic rocks of the Aar Massif and can be visited on advance reservation.

Marked fault zone through Ticino

Penninic crystalline nappes lie further to the south in Ticino, and beyond them lies the “Insubric Line”, a prominent fault zone traversing the Alps from east to west where the Adriatic and European plates meet. The Southern Alps lie to the south of this line, and they consist of crystalline rocks and also, in the area south of Lugano, of sediments. The Central Alps, including the Penninic nappes as well as a large part of the Southern Alps, therefore consist of crystalline.

More information

Additional information sources